mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
Clean up useless import from vllm to make code more clear.
- vLLM version: v0.10.0
- vLLM main:
18cc33dd60
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
279 lines
11 KiB
Python
279 lines
11 KiB
Python
#
|
|
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
|
# This file is a part of the vllm-ascend project.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# CANN-mem-based pytorch pluggable allocator to implement sleep mode.
|
|
#
|
|
import dataclasses
|
|
import os
|
|
from contextlib import contextmanager
|
|
from typing import Any, Callable, Dict, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from acl.rt import memcpy # type: ignore # noqa: F401
|
|
from vllm.logger import logger
|
|
|
|
from vllm_ascend.platform import NPUPlatform
|
|
|
|
|
|
def find_loaded_library(lib_name) -> Optional[str]:
|
|
"""
|
|
According to according to https://man7.org/linux/man-pages/man5/proc_pid_maps.5.html,
|
|
the file `/proc/self/maps` contains the memory maps of the process, which includes the
|
|
shared libraries loaded by the process. We can use this file to find the path of the
|
|
a loaded library.
|
|
""" # noqa
|
|
found_line = None
|
|
with open("/proc/self/maps") as f:
|
|
for line in f:
|
|
if lib_name in line:
|
|
found_line = line
|
|
break
|
|
if found_line is None:
|
|
# the library is not loaded in the current process
|
|
return None
|
|
# if lib_name is libcudart, we need to match a line with:
|
|
# address /path/to/libcudart-hash.so.11.0
|
|
start = found_line.index("/")
|
|
path = found_line[start:].strip()
|
|
filename = path.split("/")[-1]
|
|
assert filename.rpartition(".so")[0].startswith(lib_name), \
|
|
f"Unexpected filename: {filename} for library {lib_name}"
|
|
return path
|
|
|
|
|
|
camem_available = False
|
|
try:
|
|
from vllm_ascend.vllm_ascend_C import ( # type: ignore # noqa: F401
|
|
init_module, python_create_and_map, python_unmap_and_release)
|
|
lib_name = find_loaded_library("vllm_ascend_C")
|
|
camem_available = True
|
|
except ImportError as e:
|
|
logger.warning(
|
|
"Failed to import vllm_ascend_C:%s. Sleep mode will be disabled. ", e)
|
|
init_module = None
|
|
python_create_and_map = None
|
|
python_unmap_and_release = None
|
|
lib_name = None
|
|
libcudart = None
|
|
|
|
# py_device, py_alignedSize, py_d_mem, py_p_memHandle
|
|
HandleType = Tuple[int, int, int, int]
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class AllocationData:
|
|
handle: HandleType
|
|
tag: str
|
|
cpu_backup_tensor: Optional[torch.Tensor] = None
|
|
|
|
|
|
def create_and_map(allocation_handle: HandleType) -> None:
|
|
python_create_and_map(*allocation_handle)
|
|
|
|
|
|
def unmap_and_release(allocation_handle: HandleType) -> None:
|
|
python_unmap_and_release(*allocation_handle)
|
|
|
|
|
|
def get_pluggable_allocator(
|
|
python_malloc_fn: Callable[[tuple[int, int, int, int]], None],
|
|
python_free_func: Callable[[int], tuple[int, int, int, int]]
|
|
) -> torch.npu.memory.NPUPluggableAllocator:
|
|
init_module(python_malloc_fn, python_free_func)
|
|
new_alloc = torch.npu.memory.NPUPluggableAllocator(lib_name, 'my_malloc',
|
|
'my_free')
|
|
return new_alloc
|
|
|
|
|
|
@contextmanager
|
|
def use_memory_pool_with_allocator(
|
|
python_malloc_fn: Callable[[tuple[int, int, int, int]], None],
|
|
python_free_func: Callable[[int], tuple[int, int, int, int]]):
|
|
new_alloc = get_pluggable_allocator(python_malloc_fn, python_free_func)
|
|
mem_pool = torch.npu.memory.MemPool(new_alloc._allocator)
|
|
with torch.npu.memory.use_mem_pool(mem_pool):
|
|
yield mem_pool, new_alloc
|
|
|
|
|
|
class CaMemAllocator:
|
|
"""
|
|
A singleton class that manages a memory pool for CANN tensors.
|
|
The memory in this pool can be offloaded or discarded when the
|
|
allocator sleeps.
|
|
Inside the `use_memory_pool(tag)` context, all tensors created will
|
|
be allocated in the memory pool, and has the same tag as the
|
|
tag passed to the context.
|
|
When we call `sleep`, all tensors with the specified tag will be
|
|
offloaded to CPU memory, and the rest of the tensors will be discarded.
|
|
When we call `wake_up`, all tensors that are previously offloaded
|
|
will be loaded back to GPU memory, and the rest of the tensors will
|
|
have empty memory.
|
|
Why it needs to be a singleton?
|
|
When allocated tensors are garbage collected, PyTorch will call
|
|
the free callback, which will call the `python_free_callback` method.
|
|
The C-extension uses a global variable to store the function of an
|
|
instance of this class. If we create multiple instances of this class,
|
|
the global variable will be overwritten and the free callback will
|
|
not work as expected.
|
|
"""
|
|
instance = None
|
|
default_tag: str = "default"
|
|
|
|
@staticmethod
|
|
def get_instance() -> "CaMemAllocator":
|
|
"""
|
|
CaMemAllocator is a singleton class.
|
|
We cannot call the constructor directly.
|
|
Call this method to get the instance.
|
|
"""
|
|
if CaMemAllocator.instance is None:
|
|
CaMemAllocator.instance = CaMemAllocator()
|
|
return CaMemAllocator.instance
|
|
|
|
def __init__(self):
|
|
conf = os.environ.get("PYTORCH_NPU_ALLOC_CONF", "")
|
|
assert "expandable_segments:True" not in conf, \
|
|
("Expandable segments are not compatible with memory pool. "
|
|
"Please track https://github.com/pytorch/pytorch/issues/147851 "
|
|
"for the latest updates.")
|
|
|
|
self.pointer_to_data: Dict[int, AllocationData] = {}
|
|
self.current_tag: str = CaMemAllocator.default_tag
|
|
self.allocator_and_pools: Dict[str, Any] = {}
|
|
|
|
def python_malloc_callback(self, allocation_handle: HandleType) -> None:
|
|
"""
|
|
Internal method to store the allocation data
|
|
when memory is allocated in the memory pool."""
|
|
py_d_mem = allocation_handle[2]
|
|
self.pointer_to_data[py_d_mem] = AllocationData(
|
|
allocation_handle, self.current_tag)
|
|
return
|
|
|
|
def python_free_callback(self, ptr: int) -> HandleType:
|
|
"""
|
|
Internal method to look up the allocation data
|
|
when memory is freed in the memory pool."""
|
|
data = self.pointer_to_data.pop(ptr)
|
|
if data.cpu_backup_tensor is not None:
|
|
data.cpu_backup_tensor = None
|
|
return data.handle
|
|
|
|
def sleep(
|
|
self,
|
|
offload_tags: Optional[Union[Tuple[str, ...],
|
|
str]] = None) -> None:
|
|
"""
|
|
Put the allocator in sleep mode.
|
|
All data in the memory allocation with the specified tag will be
|
|
offloaded to CPU memory, and others will be discarded.
|
|
:param offload_tags: The tags of the memory allocation that will be
|
|
offloaded. The rest of the memory allocation will be discarded.
|
|
"""
|
|
if offload_tags is None:
|
|
# by default, allocated tensors are offloaded
|
|
# when the allocator sleeps
|
|
offload_tags = (CaMemAllocator.default_tag, )
|
|
elif isinstance(offload_tags, str):
|
|
offload_tags = (offload_tags, )
|
|
|
|
assert isinstance(offload_tags, tuple)
|
|
|
|
for ptr, data in self.pointer_to_data.items():
|
|
handle = data.handle
|
|
if data.tag in offload_tags:
|
|
size_in_bytes = handle[1]
|
|
cpu_backup_tensor = torch.empty(
|
|
size_in_bytes,
|
|
dtype=torch.uint8,
|
|
device='cpu',
|
|
pin_memory=NPUPlatform.is_pin_memory_available())
|
|
cpu_ptr = cpu_backup_tensor.data_ptr()
|
|
ACL_MEMCPY_DEVICE_TO_HOST = 2
|
|
dest_max = cpu_ptr + size_in_bytes * 2
|
|
memcpy(cpu_ptr, dest_max, ptr, size_in_bytes,
|
|
ACL_MEMCPY_DEVICE_TO_HOST)
|
|
data.cpu_backup_tensor = cpu_backup_tensor
|
|
unmap_and_release(handle)
|
|
|
|
def wake_up(self, tags: Optional[list[str]] = None) -> None:
|
|
"""
|
|
Wake up the allocator from sleep mode.
|
|
All data that is previously offloaded will be loaded back to GPU
|
|
memory, and the rest of the data will have empty memory."""
|
|
for ptr, data in self.pointer_to_data.items():
|
|
if tags is None or data.tag in tags:
|
|
handle = data.handle
|
|
create_and_map(handle)
|
|
if data.cpu_backup_tensor is not None:
|
|
cpu_backup_tensor = data.cpu_backup_tensor
|
|
if cpu_backup_tensor is not None:
|
|
size_in_bytes = cpu_backup_tensor.numel(
|
|
) * cpu_backup_tensor.element_size()
|
|
cpu_ptr = cpu_backup_tensor.data_ptr()
|
|
ACL_MEMCPY_HOST_TO_DEVICE = 1
|
|
dest_max = ptr + size_in_bytes * 2
|
|
memcpy(ptr, dest_max, cpu_ptr, size_in_bytes,
|
|
ACL_MEMCPY_HOST_TO_DEVICE)
|
|
data.cpu_backup_tensor = None
|
|
|
|
@contextmanager
|
|
def use_memory_pool(self, tag: Optional[str] = None):
|
|
"""
|
|
A context manager to use the memory pool.
|
|
All memory allocation created inside the context will be allocated
|
|
in the memory pool, and has the specified tag.
|
|
:param tag: The tag of the memory allocation. If None, the default tag
|
|
will be used.
|
|
"""
|
|
if tag is None:
|
|
tag = CaMemAllocator.default_tag
|
|
|
|
assert isinstance(tag, str)
|
|
|
|
old_tag = self.current_tag
|
|
self.current_tag = tag
|
|
with use_memory_pool_with_allocator(self.python_malloc_callback,
|
|
self.python_free_callback) as data:
|
|
# start to hit another PyTorch bug in PyTorch 2.6,
|
|
# possibly because of gc-related issue w.r.t. the allocator and
|
|
# the memory pool.
|
|
# to avoid the issue, we keep a reference of the data.
|
|
# see https://github.com/pytorch/pytorch/issues/146431 .
|
|
self.allocator_and_pools[tag] = data
|
|
yield
|
|
# PyTorch's bug, calling torch.cuda.empty_cache() will error
|
|
# when using pluggable allocator, see
|
|
# https://github.com/pytorch/pytorch/issues/145168 .
|
|
# if we have some memory allocated and then freed,
|
|
# the memory will not be released.
|
|
# right now it is fine, because we only use this allocator
|
|
# during weight loading and kv cache creation, where we only
|
|
# allocate memory.
|
|
# TODO: we need to find a way to release the memory,
|
|
# i.e. calling torch.cuda.empty_cache()
|
|
self.current_tag = old_tag
|
|
|
|
def get_current_usage(self) -> int:
|
|
"""
|
|
Get the total number of bytes allocated in the memory pool.
|
|
"""
|
|
sum_bytes: int = 0
|
|
for ptr, data in self.pointer_to_data.items():
|
|
handle = data.handle
|
|
sum_bytes += handle[1]
|
|
return sum_bytes
|