mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
This PR adds support for redundant experts in the EPLB. Key points: - Use global_num_experts = num_experts + num_redundant_experts consistently. - Backward compatible when num_redundant_experts=0. Tested On a 16-rank setup (W8A8) with static EPLB and expert_map_path, verifying router logits shape and successful requests. - vLLM version: v0.11.0rc3 - vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0 Signed-off-by: yechao237 <yechao20180411@gmail.com>
672 lines
27 KiB
Python
672 lines
27 KiB
Python
#
|
|
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
|
# This file is a part of the vllm-ascend project.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from typing import Any, Callable, Dict, Optional
|
|
|
|
import torch
|
|
import torch_npu
|
|
from vllm.attention.backends.abstract import AttentionType
|
|
from vllm.distributed.parallel_state import get_ep_group
|
|
from vllm.forward_context import get_forward_context
|
|
|
|
from vllm_ascend.attention.attention_v1 import AscendAttentionState
|
|
from vllm_ascend.ops.moe.experts_selector import select_experts
|
|
from vllm_ascend.utils import ACL_FORMAT_FRACTAL_NZ, is_310p, is_enable_nz
|
|
|
|
|
|
def quant_per_tensor(in_tensor: torch.Tensor,
|
|
input_scale: torch.Tensor,
|
|
input_offset: torch.Tensor,
|
|
function=False):
|
|
return torch_npu.npu_quantize(in_tensor, input_scale, input_offset,
|
|
torch.qint8, -1, function)
|
|
|
|
|
|
class AscendW8A8LinearMethod:
|
|
"""Linear method for Ascend W8A8.
|
|
|
|
Args:
|
|
w_sym: whether the linear weight is symmetrically quantized.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
# aclnn quant matmul requires to transpose matrix B, set to true by default.
|
|
self.transpose_weight = not is_310p()
|
|
|
|
@staticmethod
|
|
def get_weight(
|
|
input_size: int,
|
|
output_size: int,
|
|
params_dtype: torch.dtype = torch.bfloat16,
|
|
) -> Dict[str, Any]:
|
|
params_dict = {
|
|
"weight": torch.empty(output_size, input_size, dtype=torch.int8)
|
|
}
|
|
return params_dict
|
|
|
|
@staticmethod
|
|
def get_pertensor_param(params_dtype: torch.dtype) -> Dict[str, Any]:
|
|
params_dict = {}
|
|
params_dict["input_scale"] = torch.empty(1, dtype=params_dtype)
|
|
params_dict["input_offset"] = torch.empty(1, dtype=torch.int8)
|
|
return params_dict
|
|
|
|
@staticmethod
|
|
def get_perchannel_param(
|
|
output_size: int,
|
|
params_dtype: torch.dtype,
|
|
) -> Dict[str, Any]:
|
|
params_dict = {}
|
|
params_dict["quant_bias"] = torch.empty(output_size, dtype=torch.int32)
|
|
if params_dtype == torch.bfloat16:
|
|
params_dict["deq_scale"] = torch.empty(output_size,
|
|
dtype=torch.float32)
|
|
elif params_dtype == torch.float16:
|
|
params_dict["deq_scale"] = torch.empty(output_size,
|
|
dtype=torch.int64)
|
|
params_dict["weight_scale"] = torch.empty(output_size,
|
|
1,
|
|
dtype=params_dtype)
|
|
params_dict["weight_offset"] = torch.empty(output_size,
|
|
1,
|
|
dtype=params_dtype)
|
|
return params_dict
|
|
|
|
def get_pergroup_param(self, input_size: int, output_size: int,
|
|
params_dtype: torch.dtype) -> Dict[str, Any]:
|
|
return {}
|
|
|
|
@staticmethod
|
|
def apply(
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None,
|
|
tp_rank: Optional[int] = 0,
|
|
) -> torch.Tensor:
|
|
if x.dtype != torch.int8:
|
|
layer_cls_name = layer.__class__.__name__
|
|
try:
|
|
weight_prefetch_method = get_forward_context(
|
|
).weight_prefetch_method
|
|
except AssertionError:
|
|
weight_prefetch_method = None
|
|
|
|
# prefetch qkvo_proj.weight preprocess
|
|
if weight_prefetch_method:
|
|
weight_prefetch_method.maybe_prefetch_attn_weight_preprocess(
|
|
layer_cls_name=layer_cls_name,
|
|
weight=layer.weight,
|
|
start_flag=x,
|
|
)
|
|
# quant
|
|
x = quant_per_tensor(
|
|
x,
|
|
layer.aclnn_input_scale_reciprocal,
|
|
layer.aclnn_input_offset,
|
|
)
|
|
# prefetch qkvo_proj.weight postprocess
|
|
if weight_prefetch_method:
|
|
weight_prefetch_method.maybe_prefetch_attn_weight_postprocess(
|
|
layer_cls_name=layer_cls_name,
|
|
stop_flag=x,
|
|
)
|
|
|
|
quant_bias = layer.quant_bias if tp_rank == 0 else None
|
|
if is_310p():
|
|
# On 300I Duo platform, we need transpose again if
|
|
# using nz. This transpose can be skipped in torchair.
|
|
output = torch_npu.npu_quant_matmul(
|
|
x,
|
|
layer.weight.data.transpose(1, 0),
|
|
layer.deq_scale,
|
|
bias=quant_bias,
|
|
output_dtype=layer.params_dtype,
|
|
)
|
|
else:
|
|
output = torch_npu.npu_quant_matmul(
|
|
x,
|
|
layer.weight,
|
|
layer.deq_scale,
|
|
bias=quant_bias,
|
|
output_dtype=layer.params_dtype,
|
|
)
|
|
return output
|
|
|
|
def process_weights_after_loading(self, layer):
|
|
expanding_factor = layer.weight.data.shape[1]
|
|
layer.aclnn_input_scale = torch.nn.Parameter(
|
|
layer.input_scale.data.repeat(expanding_factor),
|
|
requires_grad=False)
|
|
layer.aclnn_input_scale_reciprocal = 1 / torch.nn.Parameter(
|
|
layer.input_scale.data.repeat(expanding_factor),
|
|
requires_grad=False)
|
|
layer.aclnn_input_offset = torch.nn.Parameter(
|
|
layer.input_offset.data.repeat(expanding_factor),
|
|
requires_grad=False).to(layer.aclnn_input_scale.dtype)
|
|
if self.transpose_weight:
|
|
layer.weight.data = layer.weight.data.transpose(0, 1).contiguous()
|
|
if is_enable_nz():
|
|
layer.weight.data = torch_npu.npu_format_cast(
|
|
layer.weight.data, ACL_FORMAT_FRACTAL_NZ)
|
|
layer.weight_scale.data = torch.flatten(layer.weight_scale.data)
|
|
layer.weight_offset.data = torch.flatten(layer.weight_offset.data)
|
|
|
|
|
|
class AscendW8A8FusedMoEMethod:
|
|
"""FusedMoe method for Ascend W8A8.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.transpose_weight = True
|
|
|
|
@staticmethod
|
|
def get_weight(num_experts: int, intermediate_size_per_partition: int,
|
|
hidden_sizes: int,
|
|
params_dtype: torch.dtype) -> Dict[str, Any]:
|
|
param_dict = {}
|
|
param_dict["w13_weight"] = torch.empty(num_experts,
|
|
2 *
|
|
intermediate_size_per_partition,
|
|
hidden_sizes,
|
|
dtype=torch.int8,
|
|
requires_grad=False)
|
|
param_dict["w2_weight"] = torch.empty(num_experts,
|
|
hidden_sizes,
|
|
intermediate_size_per_partition,
|
|
dtype=torch.int8,
|
|
requires_grad=False)
|
|
return param_dict
|
|
|
|
@staticmethod
|
|
def get_dynamic_quant_param(num_experts: int,
|
|
intermediate_size_per_partition: int,
|
|
hidden_sizes: int,
|
|
params_dtype: torch.dtype) -> Dict[str, Any]:
|
|
param_dict = {}
|
|
param_dict["w13_weight_scale"] = torch.empty(
|
|
num_experts,
|
|
2 * intermediate_size_per_partition,
|
|
1,
|
|
dtype=torch.float32)
|
|
param_dict["w13_weight_offset"] = torch.empty(
|
|
num_experts,
|
|
2 * intermediate_size_per_partition,
|
|
1,
|
|
dtype=torch.float16)
|
|
param_dict["w2_weight_scale"] = torch.empty(num_experts,
|
|
hidden_sizes,
|
|
1,
|
|
dtype=torch.float32)
|
|
param_dict["w2_weight_offset"] = torch.empty(num_experts,
|
|
hidden_sizes,
|
|
1,
|
|
dtype=torch.float16)
|
|
param_dict["w2_deq_scale"] = torch.empty(num_experts,
|
|
hidden_sizes,
|
|
dtype=torch.float32)
|
|
param_dict["w13_deq_scale"] = torch.empty(
|
|
num_experts,
|
|
2 * intermediate_size_per_partition,
|
|
dtype=torch.float32)
|
|
param_dict["w2_input_scale"] = torch.empty(num_experts,
|
|
1,
|
|
dtype=torch.float32)
|
|
param_dict["w13_input_scale"] = torch.empty(num_experts,
|
|
1,
|
|
dtype=torch.float32)
|
|
param_dict["w2_input_offset"] = torch.empty(num_experts,
|
|
1,
|
|
dtype=torch.int8)
|
|
param_dict["w13_input_offset"] = torch.empty(num_experts,
|
|
1,
|
|
dtype=torch.int8)
|
|
param_dict["quant_bias"] = torch.empty(num_experts,
|
|
hidden_sizes,
|
|
dtype=torch.int32)
|
|
|
|
return param_dict
|
|
|
|
def apply(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
router_logits: torch.Tensor,
|
|
top_k: int,
|
|
renormalize: bool,
|
|
use_grouped_topk: bool = False,
|
|
global_num_experts: int = -1,
|
|
expert_map: Optional[torch.Tensor] = None,
|
|
topk_group: Optional[int] = None,
|
|
num_expert_group: Optional[int] = None,
|
|
custom_routing_function: Optional[Callable] = None,
|
|
scoring_func: str = "softmax",
|
|
e_score_correction_bias: Optional[torch.Tensor] = None,
|
|
is_prefill: bool = True,
|
|
enable_force_load_balance: bool = False,
|
|
log2phy: torch.Tensor = None,
|
|
global_redundant_expert_num: int = 0,
|
|
shared_experts: Optional[Any] = None,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
assert router_logits.shape[
|
|
1] == global_num_experts - global_redundant_expert_num, "Number of global experts mismatch (excluding redundancy)"
|
|
|
|
topk_weights, topk_ids = select_experts(
|
|
hidden_states=x,
|
|
router_logits=router_logits,
|
|
top_k=top_k,
|
|
use_grouped_topk=use_grouped_topk,
|
|
renormalize=renormalize,
|
|
topk_group=topk_group,
|
|
num_expert_group=num_expert_group,
|
|
custom_routing_function=custom_routing_function,
|
|
scoring_func=scoring_func,
|
|
e_score_correction_bias=e_score_correction_bias,
|
|
global_num_experts=global_num_experts)
|
|
|
|
if is_310p():
|
|
return fused_experts_310p(hidden_states=x,
|
|
w1=layer.w13_weight,
|
|
w1_scale=layer.w13_weight_scale,
|
|
w1_input_scale=layer.w13_input_scale,
|
|
w2=layer.w2_weight,
|
|
w2_scale=layer.w2_weight_scale,
|
|
w2_input_scale=layer.w2_input_scale,
|
|
topk_weights=topk_weights,
|
|
topk_ids=topk_ids,
|
|
top_k=top_k,
|
|
global_num_experts=global_num_experts,
|
|
expert_map=expert_map)
|
|
return fused_experts(hidden_states=x,
|
|
w1=layer.w13_weight,
|
|
w1_scale=layer.w13_weight_scale,
|
|
w1_input_scale=layer.w13_input_scale,
|
|
w1_input_offset=layer.w13_input_offset,
|
|
w2=layer.w2_weight,
|
|
w2_scale=layer.w2_weight_scale,
|
|
w2_input_scale=layer.w2_input_scale,
|
|
w2_input_offset=layer.w2_input_offset,
|
|
topk_weights=topk_weights,
|
|
topk_ids=topk_ids,
|
|
top_k=top_k,
|
|
global_num_experts=global_num_experts,
|
|
expert_map=expert_map)
|
|
|
|
def process_weights_after_loading(self, layer):
|
|
if not is_310p():
|
|
layer.w13_weight.data = layer.w13_weight.data.transpose(
|
|
1, 2).contiguous()
|
|
layer.w2_weight.data = layer.w2_weight.data.transpose(
|
|
1, 2).contiguous()
|
|
layer.w13_weight_scale.data = layer.w13_weight_scale.data.view(
|
|
layer.w13_weight_scale.data.shape[0], -1)
|
|
|
|
layer.w13_weight_offset.data = layer.w13_weight_offset.data.view(
|
|
layer.w13_weight_offset.data.shape[0], -1)
|
|
layer.w2_weight_scale.data = layer.w2_weight_scale.data.view(
|
|
layer.w2_weight_scale.data.shape[0], -1)
|
|
layer.w2_weight_offset.data = layer.w2_weight_offset.data.view(
|
|
layer.w2_weight_offset.data.shape[0], -1)
|
|
expanding_factor_w13 = layer.w13_weight.data.shape[1]
|
|
expanding_factor_w2 = layer.w2_weight.data.shape[1]
|
|
|
|
if is_310p():
|
|
layer.w13_input_scale.data = torch.nn.Parameter(
|
|
layer.w13_input_scale.data.max())
|
|
layer.w2_input_scale.data = torch.nn.Parameter(
|
|
layer.w2_input_scale.data.max())
|
|
else:
|
|
layer.w13_input_scale.data = torch.nn.Parameter(
|
|
layer.w13_input_scale.data.repeat(1,
|
|
expanding_factor_w13)[0:1])
|
|
layer.w2_input_scale.data = torch.nn.Parameter(
|
|
layer.w2_input_scale.data.repeat(1, expanding_factor_w2)[0:1])
|
|
|
|
layer.w13_input_offset.data = torch.nn.Parameter(
|
|
layer.w13_input_scale.data.repeat(1, expanding_factor_w13)[0:1])
|
|
layer.w2_input_offset.data = torch.nn.Parameter(
|
|
layer.w2_input_scale.data.repeat(1, expanding_factor_w2)[0:1])
|
|
|
|
# converting ACL_FORMAT_FRACTAL_NZ.
|
|
# npu_quant_grouped_matmul_dequant in eager mode does not accept
|
|
# ACL_FORMAT_FRACTAL_NZ.
|
|
if not is_310p() and is_enable_nz():
|
|
layer.w13_weight.data = torch_npu.npu_format_cast(
|
|
layer.w13_weight.data, ACL_FORMAT_FRACTAL_NZ).contiguous()
|
|
layer.w2_weight.data = torch_npu.npu_format_cast(
|
|
layer.w2_weight.data, ACL_FORMAT_FRACTAL_NZ).contiguous()
|
|
|
|
|
|
class AscendC8KVCacheMethod:
|
|
|
|
def __init__(self) -> None:
|
|
self.antiquant_scale_comb = None
|
|
|
|
@staticmethod
|
|
def create_weights(layer) -> None:
|
|
param_dict = {} # num_kv_heads * head_size
|
|
param_dict["key_antiquant_scale"] = torch.empty(layer.num_kv_heads *
|
|
layer.head_size,
|
|
dtype=torch.float16,
|
|
requires_grad=False)
|
|
param_dict["value_antiquant_scale"] = torch.empty(layer.num_kv_heads *
|
|
layer.head_size,
|
|
dtype=torch.float16,
|
|
requires_grad=False)
|
|
for weight_name, weight_param in param_dict.items():
|
|
param = torch.nn.Parameter(weight_param, requires_grad=False)
|
|
layer.register_parameter(weight_name, param)
|
|
|
|
def process_weights_after_loading(self, layer):
|
|
self.antiquant_scale_comb = torch.cat(
|
|
(layer.key_antiquant_scale.data.unsqueeze(0),
|
|
layer.value_antiquant_scale.data.unsqueeze(0)),
|
|
dim=0).to(torch.float16).contiguous()
|
|
|
|
def apply(self, layer, query, key, value, kv_cache, attn_metadata,
|
|
attn_type, scale, output) -> torch.Tensor:
|
|
num_tokens = query.shape[0]
|
|
if attn_metadata is None:
|
|
return output.view(num_tokens, layer.num_heads * layer.head_size)
|
|
assert layer._k_scale_float == 1.0 and layer._v_scale_float == 1.0
|
|
if attn_type != AttentionType.DECODER:
|
|
raise NotImplementedError("Encoder self-attention and "
|
|
"encoder/decoder cross-attention "
|
|
"are not implemented for "
|
|
"PallasAttentionBackendImpl")
|
|
|
|
# C8
|
|
quant_key = quant_per_tensor(
|
|
key.view(-1, layer.num_kv_heads * layer.head_size),
|
|
layer.key_antiquant_scale.data.view(-1), None, True)
|
|
quant_value = quant_per_tensor(
|
|
value.view(-1, layer.num_kv_heads * layer.head_size),
|
|
layer.value_antiquant_scale.data.view(-1), None, True)
|
|
|
|
# View q k v to BSH.
|
|
query = query.view(-1, layer.num_heads, layer.head_size)
|
|
key = key.view(-1, layer.num_kv_heads, layer.head_size)
|
|
value = value.view(-1, layer.num_kv_heads, layer.head_size)
|
|
# TODO: Remove this contiguous in the future.
|
|
value = value.contiguous()
|
|
|
|
if kv_cache[0].numel() > 0:
|
|
# if key_cache is None:
|
|
key_cache, value_cache = kv_cache[0], kv_cache[1]
|
|
slots = attn_metadata.slot_mapping
|
|
|
|
block_size = key_cache.shape[1]
|
|
slots_indices = slots.reshape(-1, 1)
|
|
block_indices = slots_indices // block_size
|
|
slots_indices = slots_indices % block_size
|
|
indices = torch.cat((block_indices, slots_indices), dim=1)
|
|
|
|
# C8
|
|
torch_npu.npu_scatter_nd_update_(key_cache, indices, quant_key)
|
|
torch_npu.npu_scatter_nd_update_(value_cache, indices, quant_value)
|
|
|
|
# V0-Style scheduler situation.
|
|
if attn_metadata.attn_state == AscendAttentionState.PrefillNoCache:
|
|
assert attn_metadata is not None
|
|
assert attn_metadata.attn_mask is not None
|
|
mask = attn_metadata.attn_mask
|
|
torch_npu._npu_flash_attention(query=query,
|
|
key=key,
|
|
value=value,
|
|
mask=mask,
|
|
seq_len=attn_metadata.seq_lens,
|
|
scale_value=scale,
|
|
num_heads=layer.num_heads,
|
|
num_kv_heads=layer.num_kv_heads,
|
|
out=output.reshape(query.shape))
|
|
|
|
elif attn_metadata.attn_state == AscendAttentionState.PrefillCacheHit:
|
|
raise NotImplementedError("kv cache int8 are not "
|
|
"implemented for "
|
|
"PrefillCacheHit")
|
|
elif attn_metadata.attn_state == AscendAttentionState.DecodeOnly: # changed attn_metadata.attn_state == AscendAttentionState.DecodeOnly
|
|
if hasattr(attn_metadata, "decode"):
|
|
# torch_air
|
|
decode_meta = attn_metadata.decode
|
|
seq_lens = decode_meta.seq_lens_list
|
|
else:
|
|
seq_lens = attn_metadata.seq_lens
|
|
block_size = key_cache.shape[1]
|
|
query = query.view(num_tokens, 1, layer.num_heads *
|
|
layer.head_size).contiguous() # changed
|
|
|
|
# [num_blocks, block_size, N, D] --> [num_blocks, N, block_size, D]
|
|
key = key_cache
|
|
value = value_cache
|
|
|
|
output = torch_npu.npu_incre_flash_attention(
|
|
query,
|
|
key,
|
|
value,
|
|
num_key_value_heads=layer.num_kv_heads,
|
|
num_heads=layer.num_heads,
|
|
actual_seq_lengths=seq_lens,
|
|
scale_value=scale,
|
|
input_layout='BSH',
|
|
block_size=block_size,
|
|
block_table=attn_metadata.block_tables,
|
|
antiquant_scale=self.antiquant_scale_comb,
|
|
)
|
|
|
|
# Normal V1 situation.
|
|
else:
|
|
raise NotImplementedError("kv cache int8 are not "
|
|
"implemented for "
|
|
"other case")
|
|
return output
|
|
|
|
|
|
def fused_experts_310p(
|
|
hidden_states: torch.Tensor,
|
|
w1: torch.Tensor,
|
|
w1_scale: torch.Tensor,
|
|
w1_input_scale: torch.Tensor,
|
|
w2: torch.Tensor,
|
|
w2_scale: torch.Tensor,
|
|
w2_input_scale: torch.Tensor,
|
|
topk_weights: torch.Tensor,
|
|
topk_ids: torch.Tensor,
|
|
top_k: int,
|
|
global_num_experts: int,
|
|
expert_map: torch.Tensor = None,
|
|
) -> torch.Tensor:
|
|
ep_size = get_ep_group().world_size
|
|
local_num_experts = global_num_experts // ep_size
|
|
local_num_group = top_k // ep_size
|
|
|
|
bsz, _ = hidden_states.shape
|
|
flatten_topk_ids = topk_ids.view(-1)
|
|
sorted_topk_ids = torch.argsort(flatten_topk_ids.float())
|
|
sorted_topk_ids = sorted_topk_ids.to(torch.int32)
|
|
sorted_hidden_states = hidden_states.index_select(
|
|
0, sorted_topk_ids // local_num_group)
|
|
|
|
experts_id = torch.arange(0,
|
|
local_num_experts,
|
|
dtype=topk_ids.dtype,
|
|
device=topk_ids.device)
|
|
num_tokens_per_expert = (flatten_topk_ids.unsqueeze(-1) == experts_id).to(
|
|
torch.float32).sum(0)
|
|
topk_scales = topk_weights.view(-1).index_select(
|
|
0, sorted_topk_ids).unsqueeze(-1)
|
|
group_list = num_tokens_per_expert.cumsum(dim=0).to(torch.int64)
|
|
|
|
gate_up_out = torch_npu.npu_quant_grouped_matmul_dequant(
|
|
x=sorted_hidden_states,
|
|
quantized_weight=w1,
|
|
weight_scale=w1_scale,
|
|
group_list=group_list,
|
|
x_scale=w1_input_scale,
|
|
quant_mode="pertensor")
|
|
|
|
gate_up_out = torch_npu.npu_swiglu(gate_up_out.to(torch.float32)).to(
|
|
torch.float16)
|
|
gate_up_out *= topk_scales
|
|
|
|
down_out = torch_npu.npu_quant_grouped_matmul_dequant(
|
|
x=gate_up_out,
|
|
quantized_weight=w2,
|
|
weight_scale=w2_scale,
|
|
group_list=group_list,
|
|
x_scale=w2_input_scale,
|
|
quant_mode="pertensor")
|
|
|
|
unsorted_topk_ids = torch.argsort(sorted_topk_ids.float()).to(torch.int32)
|
|
unsorted_hidden_states = down_out.index_select(0, unsorted_topk_ids)
|
|
final_hidden_states = unsorted_hidden_states.reshape(
|
|
bsz, top_k // ep_size, -1).sum(1)
|
|
|
|
return final_hidden_states
|
|
|
|
|
|
def fused_experts(
|
|
hidden_states: torch.Tensor,
|
|
w1: torch.Tensor,
|
|
w1_scale: torch.Tensor,
|
|
w1_input_scale: torch.Tensor,
|
|
w1_input_offset: torch.Tensor,
|
|
w2: torch.Tensor,
|
|
w2_scale: torch.Tensor,
|
|
w2_input_scale: torch.Tensor,
|
|
w2_input_offset: torch.Tensor,
|
|
topk_weights: torch.Tensor,
|
|
topk_ids: torch.Tensor,
|
|
top_k: int,
|
|
global_num_experts: int,
|
|
expert_map: torch.Tensor = None,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Fused experts with top-k routing.
|
|
|
|
Args:
|
|
hidden_states: Hidden states of shape (num_tokens, hidden_size).
|
|
w1: Expert weights1 of shape (num_experts, intermediate_size * 2, hidden_size).
|
|
w2: Expert weights2 of shape (num_experts, hidden_size, intermediate_size).
|
|
topk_weights: Routing weights of shape (num_tokens, top_k).
|
|
topk_ids: Selected expert IDs of shape (num_tokens, top_k).
|
|
top_k: Number of experts to select.
|
|
expert_map: Expert mapping of shape (num_experts,).
|
|
|
|
Returns:
|
|
hidden_states: Hidden states after routing.
|
|
"""
|
|
"""
|
|
# Check constraints.
|
|
assert hidden_states.shape[1] == w1.shape[2], "Hidden size mismatch"
|
|
assert topk_weights.shape == topk_ids.shape, "topk shape mismatch"
|
|
assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
|
|
assert w1.is_contiguous(), "Expert weights1 must be contiguous"
|
|
assert w2.is_contiguous(), "Expert weights2 must be contiguous"
|
|
"""
|
|
|
|
original_dtype = hidden_states.dtype
|
|
ep_size = get_ep_group().world_size
|
|
local_num_experts = global_num_experts // ep_size
|
|
w1_input_scale, _ = w1_input_scale.max(0)
|
|
quant_sorted_hidden_states = quant_per_tensor(
|
|
hidden_states,
|
|
w1_input_scale,
|
|
None,
|
|
True,
|
|
)
|
|
if expert_map is not None:
|
|
expanded_x, expanded_row_idx, expert_token_count, expanded_scale = torch_npu.npu_moe_init_routing_v2(
|
|
quant_sorted_hidden_states,
|
|
topk_ids,
|
|
scale=None,
|
|
active_num=topk_ids.numel(),
|
|
expert_capacity=-1,
|
|
expert_num=local_num_experts,
|
|
drop_pad_mode=0,
|
|
expert_tokens_num_type=1,
|
|
expert_tokens_num_flag=True,
|
|
quant_mode=-1,
|
|
active_expert_range=[0, local_num_experts],
|
|
row_idx_type=0,
|
|
)
|
|
|
|
else:
|
|
raise NotImplementedError(
|
|
"The quantified version of MOE class models "
|
|
"currently does not support tensor parallelism")
|
|
if expanded_x.dtype != w1.dtype:
|
|
w1_input_scale, _ = w1_input_scale.max(0)
|
|
quant_sorted_hidden_states = quant_per_tensor(
|
|
expanded_x,
|
|
w1_input_scale,
|
|
None,
|
|
True,
|
|
)
|
|
else:
|
|
quant_sorted_hidden_states = expanded_x
|
|
gate_up_out = torch_npu.npu_grouped_matmul(
|
|
x=[quant_sorted_hidden_states],
|
|
weight=[w1],
|
|
scale=[w1_scale * w1_input_scale[0]],
|
|
split_item=2,
|
|
group_list_type=1,
|
|
group_type=0,
|
|
group_list=expert_token_count,
|
|
output_dtype=original_dtype,
|
|
)[0]
|
|
gate_up_out = torch_npu.npu_swiglu(gate_up_out)
|
|
|
|
if gate_up_out.dtype != w2.dtype:
|
|
w2_input_scale, _ = w2_input_scale.max(0)
|
|
quant_gate_up_out = quant_per_tensor(
|
|
gate_up_out,
|
|
w2_input_scale,
|
|
None,
|
|
True,
|
|
)
|
|
else:
|
|
quant_gate_up_out = gate_up_out
|
|
|
|
down_out = torch_npu.npu_grouped_matmul(
|
|
x=[quant_gate_up_out],
|
|
weight=[w2],
|
|
scale=[w2_scale * w2_input_scale[0]],
|
|
split_item=2,
|
|
group_list_type=1,
|
|
group_type=0,
|
|
group_list=expert_token_count,
|
|
output_dtype=original_dtype,
|
|
)[0]
|
|
|
|
if expert_map is not None:
|
|
final_hidden_states = torch_npu.npu_moe_finalize_routing(
|
|
down_out,
|
|
skip1=None,
|
|
skip2=None,
|
|
bias=None,
|
|
scales=topk_weights.to(down_out.dtype),
|
|
expanded_src_to_dst_row=expanded_row_idx,
|
|
export_for_source_row=topk_ids,
|
|
drop_pad_mode=2,
|
|
)
|
|
else:
|
|
raise NotImplementedError(
|
|
"The quantified version of MOE class models "
|
|
"currently does not support tensor parallelism")
|
|
|
|
return final_hidden_states
|