mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
This PR adds support for redundant experts in the EPLB. Key points: - Use global_num_experts = num_experts + num_redundant_experts consistently. - Backward compatible when num_redundant_experts=0. Tested On a 16-rank setup (W8A8) with static EPLB and expert_map_path, verifying router logits shape and successful requests. - vLLM version: v0.11.0rc3 - vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0 Signed-off-by: yechao237 <yechao20180411@gmail.com>
722 lines
30 KiB
Python
722 lines
30 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# Copyright (c) 2024; NVIDIA CORPORATION. All rights reserved.
|
|
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
|
# Copyright 2023 The vLLM team.
|
|
# Copyright 2023 DeepSeek-AI and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from abc import ABC, abstractmethod
|
|
from typing import Any, Optional
|
|
|
|
import torch
|
|
import torch_npu
|
|
from vllm.distributed.parallel_state import get_ep_group
|
|
|
|
from vllm_ascend.distributed.parallel_state import get_mc2_group
|
|
from vllm_ascend.ops.moe.comm_utils import (
|
|
async_all_to_all, gather_from_sequence_parallel_region)
|
|
from vllm_ascend.utils import (AscendSocVersion, get_ascend_soc_version,
|
|
is_hierarchical_communication_enabled)
|
|
|
|
|
|
class MoETokenDispatcher(ABC):
|
|
|
|
def __init__(self, **kwargs) -> None:
|
|
"""
|
|
Initialize the MoE Token Dispatcher.
|
|
"""
|
|
self.top_k = kwargs.get("top_k", 0)
|
|
self.num_experts = kwargs.get("num_experts", 0)
|
|
|
|
@property
|
|
def ep_group(self):
|
|
"""Get expert model parallel group."""
|
|
return get_ep_group().device_group
|
|
|
|
@property
|
|
def ep_rank(self):
|
|
return get_ep_group().rank_in_group
|
|
|
|
@property
|
|
def ep_size(self):
|
|
return get_ep_group().world_size
|
|
|
|
@abstractmethod
|
|
def token_dispatch(self,
|
|
hidden_states: torch.Tensor,
|
|
topk_weights: torch.Tensor,
|
|
topk_ids: torch.Tensor,
|
|
expert_map: Optional[torch.Tensor] = None,
|
|
log2phy: Optional[torch.Tensor] = None,
|
|
global_redundant_expert_num: int = 0,
|
|
shared_experts: Optional[Any] = None,
|
|
quantized_x_for_share: Optional[Any] = None,
|
|
dynamic_scale_for_share: Optional[Any] = None,
|
|
mc2_mask: Optional[torch.Tensor] = None,
|
|
apply_router_weight_on_input: bool = False,
|
|
with_quant: bool = False):
|
|
raise NotImplementedError("Dispatch function not implemented.")
|
|
|
|
@abstractmethod
|
|
def token_combine(self,
|
|
hidden_states: torch.Tensor,
|
|
bias: torch.Tensor = None):
|
|
raise NotImplementedError("Combine function not implemented.")
|
|
|
|
|
|
class TokenDispatcherWithMC2(MoETokenDispatcher):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
device_group = get_mc2_group().device_group
|
|
# TODO: Try local_rank = ep_group.rank_in_group
|
|
local_rank = torch.distributed.get_rank(group=device_group)
|
|
backend = device_group._get_backend(torch.device("npu"))
|
|
self.moe_all_to_all_group_name = backend.get_hccl_comm_name(local_rank)
|
|
self.ep_rank_id = get_mc2_group().rank_in_group
|
|
self.ep_world_size = get_mc2_group().world_size
|
|
self.enable_dispatch_v2 = hasattr(torch_npu,
|
|
"npu_moe_distribute_dispatch_v2")
|
|
self.need_extra_args = (
|
|
get_ascend_soc_version() == AscendSocVersion.A3)
|
|
|
|
# NOTE: Currently, when in A3, we need to pass in some extra param into dispatch & combine
|
|
self.a3_need_extra_args = \
|
|
get_ascend_soc_version() == AscendSocVersion.A3
|
|
# NOTE: When in A2, setting the environment variables HCCL_INTRA_PCIE_ENABLE=1 and
|
|
# HCCL_INTRA_ROCE_ENABLE=0 can reduce cross-machine communication traffic and significantly
|
|
# improve communication performance.
|
|
self.need_expert_scale = is_hierarchical_communication_enabled()
|
|
self.output = None
|
|
self.assist_info_for_combine = None
|
|
self.ep_recv_counts = None
|
|
self.shared_act = None
|
|
self.topk_ids = None
|
|
self.topk_weights = None
|
|
self.shared_experts = None
|
|
self.mc2_mask = None
|
|
self.with_quant = False
|
|
self.expand_scales = None
|
|
|
|
def get_dispatch_mc2_kwargs(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
topk_weights: torch.Tensor,
|
|
topk_ids: torch.Tensor,
|
|
expert_map: torch.Tensor,
|
|
global_redundant_expert_num: int = 0,
|
|
):
|
|
if self.with_quant:
|
|
quant_mode = 2
|
|
moe_expert_num = len(expert_map)
|
|
else:
|
|
quant_mode = 0
|
|
moe_expert_num = len(expert_map)
|
|
kwargs_mc2 = {
|
|
"x": hidden_states,
|
|
"expert_ids": topk_ids,
|
|
"expert_shard_type": 0,
|
|
"shared_expert_rank_num": 0,
|
|
"moe_expert_num": moe_expert_num,
|
|
"global_bs": 0,
|
|
"expert_token_nums_type": 0,
|
|
}
|
|
|
|
stage1_kwargs = {
|
|
"scales": None,
|
|
"quant_mode": quant_mode,
|
|
"group_ep": self.moe_all_to_all_group_name,
|
|
"ep_world_size": self.ep_world_size,
|
|
"ep_rank_id": self.ep_rank_id,
|
|
}
|
|
if self.need_extra_args:
|
|
stage1_kwargs.update({
|
|
"group_tp": self.moe_all_to_all_group_name,
|
|
"tp_world_size": 1,
|
|
"tp_rank_id": 0,
|
|
})
|
|
if self.a3_need_extra_args and self.enable_dispatch_v2:
|
|
stage1_kwargs.update({
|
|
"x_active_mask": self.mc2_mask,
|
|
})
|
|
if self.need_expert_scale:
|
|
stage1_kwargs.update({
|
|
"expert_scales":
|
|
topk_weights.to(torch.float32),
|
|
})
|
|
|
|
kwargs_mc2.update(stage1_kwargs)
|
|
return kwargs_mc2
|
|
|
|
def token_dispatch(self,
|
|
hidden_states: torch.Tensor,
|
|
topk_weights: torch.Tensor,
|
|
topk_ids: torch.Tensor,
|
|
expert_map: Optional[torch.Tensor] = None,
|
|
log2phy: Optional[torch.Tensor] = None,
|
|
global_redundant_expert_num: int = 0,
|
|
shared_experts: Optional[Any] = None,
|
|
quantized_x_for_share: Optional[Any] = None,
|
|
dynamic_scale_for_share: Optional[Any] = None,
|
|
mc2_mask: Optional[torch.Tensor] = None,
|
|
apply_router_weight_on_input: bool = False,
|
|
with_quant: bool = False):
|
|
self.with_quant = with_quant
|
|
self.expert_map = expert_map
|
|
self.topk_ids = topk_ids
|
|
self.topk_weights = topk_weights
|
|
self.shared_experts = shared_experts
|
|
self.mc2_mask = mc2_mask
|
|
|
|
kwargs_mc2 = self.get_dispatch_mc2_kwargs(hidden_states, topk_weights,
|
|
topk_ids, expert_map,
|
|
global_redundant_expert_num)
|
|
self.output = torch_npu.npu_moe_distribute_dispatch_v2(
|
|
**kwargs_mc2
|
|
) if self.enable_dispatch_v2 else torch_npu.npu_moe_distribute_dispatch(
|
|
**kwargs_mc2)
|
|
# comm_stream.wait_stream(torch.npu.current_stream())
|
|
expand_x, dynamic_scale, self.assist_info_for_combine, expert_token_nums, \
|
|
self.ep_recv_counts, _, self.expand_scales = self.output[0:7]
|
|
|
|
if self.with_quant:
|
|
if shared_experts is not None:
|
|
share_up_out, _ = shared_experts.gate_up_proj(
|
|
(quantized_x_for_share, dynamic_scale_for_share))
|
|
shared_gate_up, shared_dequant_scale = share_up_out[
|
|
0], share_up_out[1]
|
|
|
|
shared_act_out = shared_experts.act_fn(
|
|
(shared_gate_up, shared_dequant_scale))
|
|
self.shared_act, self.swiglu_out_scale = \
|
|
shared_act_out[0], shared_act_out[1]
|
|
|
|
else:
|
|
if shared_experts is not None:
|
|
shared_gate_up, _ = shared_experts.gate_up_proj(hidden_states)
|
|
self.shared_act = shared_experts.act_fn(shared_gate_up)
|
|
group_list_type = 0
|
|
return {
|
|
"group_list_type": group_list_type,
|
|
"hidden_states": expand_x,
|
|
"group_list": expert_token_nums,
|
|
"dynamic_scale": dynamic_scale,
|
|
}
|
|
|
|
def get_combine_mc_kwargs(self, hidden_states: torch.Tensor):
|
|
assert self.expert_map is not None
|
|
assert self.topk_weights is not None
|
|
assert self.topk_ids is not None
|
|
assert self.output is not None
|
|
moe_expert_num = len(self.expert_map)
|
|
# moeCombine
|
|
kwargs_mc2 = {
|
|
"expand_x": hidden_states,
|
|
"expert_ids": self.topk_ids,
|
|
"expert_scales": self.topk_weights.to(torch.float32),
|
|
"expert_shard_type": 0,
|
|
"shared_expert_rank_num": 0,
|
|
"moe_expert_num": moe_expert_num,
|
|
"global_bs": 0,
|
|
}
|
|
if self.with_quant:
|
|
tp_recv_counts = torch.empty(1,
|
|
dtype=torch.int32,
|
|
device=hidden_states.device)
|
|
else:
|
|
tp_recv_counts = self.output[5]
|
|
stage3_kwargs = {
|
|
"ep_send_counts": self.ep_recv_counts,
|
|
"group_ep": self.moe_all_to_all_group_name,
|
|
"ep_world_size": self.ep_world_size,
|
|
"ep_rank_id": self.ep_rank_id,
|
|
"expand_scales": self.expand_scales,
|
|
}
|
|
if self.enable_dispatch_v2:
|
|
stage3_kwargs.update({
|
|
"assist_info_for_combine":
|
|
self.assist_info_for_combine,
|
|
})
|
|
else:
|
|
stage3_kwargs.update({
|
|
"expand_idx": self.assist_info_for_combine,
|
|
})
|
|
if self.need_extra_args:
|
|
stage3_kwargs.update({
|
|
"tp_send_counts": tp_recv_counts,
|
|
"group_tp": self.moe_all_to_all_group_name,
|
|
"tp_world_size": 1,
|
|
"tp_rank_id": 0,
|
|
})
|
|
if self.a3_need_extra_args and self.enable_dispatch_v2:
|
|
stage3_kwargs.update({
|
|
"x_active_mask": self.mc2_mask,
|
|
})
|
|
kwargs_mc2.update(stage3_kwargs)
|
|
return kwargs_mc2
|
|
|
|
def token_combine(self,
|
|
hidden_states: torch.Tensor,
|
|
bias: torch.Tensor = None):
|
|
kwargs_mc2 = self.get_combine_mc_kwargs(hidden_states)
|
|
hidden_states = torch_npu.npu_moe_distribute_combine_v2(
|
|
**kwargs_mc2
|
|
) if self.enable_dispatch_v2 else torch_npu.npu_moe_distribute_combine(
|
|
**kwargs_mc2)
|
|
|
|
# these values are no longer used, so they need to be set to None for memory release.
|
|
self.output = None
|
|
self.assist_info_for_combine = None
|
|
self.ep_recv_counts = None
|
|
self.topk_ids = None
|
|
self.topk_weights = None
|
|
self.mc2_mask = None
|
|
self.expert_map = None
|
|
self.expand_scales = None
|
|
|
|
if self.shared_experts is None:
|
|
return hidden_states
|
|
else:
|
|
if self.with_quant:
|
|
shared_hidden_states, _ = self.shared_experts.down_proj(
|
|
(self.shared_act, self.swiglu_out_scale))
|
|
else:
|
|
shared_hidden_states, _ = self.shared_experts.down_proj(
|
|
self.shared_act)
|
|
self.shared_act = None
|
|
self.shared_experts = None
|
|
self.swiglu_out_scale = None
|
|
return hidden_states, shared_hidden_states
|
|
|
|
|
|
class TokenDispatcherWithAllGather(MoETokenDispatcher):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.apply_router_weight_on_input = False
|
|
self.max_num_tokens = kwargs.get("max_num_tokens")
|
|
self.num_experts_local = kwargs.get("num_local_experts", 0)
|
|
self.sorted_weights = None
|
|
self.expanded_row_idx = None
|
|
self.sorted_token_indices = None
|
|
self.original_shape = None
|
|
self.mask = None
|
|
self.expert_map = None
|
|
self.topk_weights = None
|
|
self.topk_ids = None
|
|
self.with_quant = False
|
|
|
|
def token_dispatch(self,
|
|
hidden_states: torch.Tensor,
|
|
topk_weights: torch.Tensor,
|
|
topk_ids: torch.Tensor,
|
|
expert_map: Optional[torch.Tensor] = None,
|
|
log2phy: Optional[torch.Tensor] = None,
|
|
global_redundant_expert_num: int = 0,
|
|
shared_experts: Optional[Any] = None,
|
|
quantized_x_for_share: Optional[Any] = None,
|
|
dynamic_scale_for_share: Optional[Any] = None,
|
|
mc2_mask: Optional[torch.Tensor] = None,
|
|
apply_router_weight_on_input: bool = False,
|
|
with_quant: bool = False):
|
|
self.with_quant = with_quant
|
|
self.original_shape = hidden_states.shape
|
|
|
|
num_tokens = hidden_states.shape[:-1].numel()
|
|
self.expert_map = expert_map
|
|
self.topk_weights = topk_weights
|
|
self.topk_ids = topk_ids
|
|
self.apply_router_weight_on_input = apply_router_weight_on_input
|
|
if self.apply_router_weight_on_input:
|
|
assert (topk_weights.dim() == 2
|
|
), "`topk_weights` should be in shape (num_tokens, topk)"
|
|
_, topk = topk_weights.shape
|
|
assert (
|
|
topk == 1
|
|
), "Only support topk=1 when `apply_router_weight_on_input` is True"
|
|
hidden_states = hidden_states * \
|
|
topk_weights.to(hidden_states.dtype)
|
|
if expert_map is not None:
|
|
global_num_experts = len(expert_map)
|
|
mask = (expert_map[topk_ids] != -1)
|
|
self.topk_weights = topk_weights * mask
|
|
first_expert_idx = get_ep_group(
|
|
).rank_in_group * self.num_experts_local
|
|
last_expert_idx = first_expert_idx + self.num_experts_local
|
|
else:
|
|
first_expert_idx = 0
|
|
last_expert_idx = self.num_experts_local
|
|
global_num_experts = self.num_experts_local
|
|
|
|
sorted_hidden_states, self.expanded_row_idx, expert_tokens, pertoken_scale = (
|
|
torch_npu.npu_moe_init_routing_v2(
|
|
hidden_states,
|
|
topk_ids,
|
|
active_num=num_tokens * self.top_k,
|
|
expert_num=global_num_experts,
|
|
expert_tokens_num_type=1,
|
|
expert_tokens_num_flag=True,
|
|
active_expert_range=[first_expert_idx, last_expert_idx],
|
|
quant_mode=1 if self.with_quant else -1,
|
|
))
|
|
expert_tokens = expert_tokens.to(torch.int64)
|
|
group_list_type = 1 # `count` mode
|
|
return {
|
|
"group_list_type": group_list_type,
|
|
"hidden_states": sorted_hidden_states,
|
|
"group_list": expert_tokens,
|
|
"dynamic_scale": pertoken_scale if self.with_quant else None,
|
|
}
|
|
|
|
def token_combine(self,
|
|
hidden_states: torch.Tensor,
|
|
bias: torch.Tensor = None):
|
|
assert self.original_shape is not None
|
|
final_hidden_states = torch_npu.npu_moe_token_unpermute(
|
|
permuted_tokens=hidden_states,
|
|
sorted_indices=torch.abs(self.expanded_row_idx),
|
|
probs=self.topk_weights)
|
|
if len(self.original_shape) == 3:
|
|
final_hidden_states = final_hidden_states.view(self.original_shape)
|
|
|
|
# these values are no longer used, so they need to be set to None for memory release.
|
|
self.expert_map = None
|
|
self.topk_weights = None
|
|
self.topk_ids = None
|
|
self.expanded_row_idx = None
|
|
return final_hidden_states
|
|
|
|
|
|
# mypy: disable-error-code="override"
|
|
class TokenDispatcherWithMoge(MoETokenDispatcher):
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.apply_router_weight_on_input = False
|
|
self.local_num_experts = self.num_experts // self.ep_size
|
|
self.local_num_group = self.top_k // self.ep_size
|
|
self.bsz = None
|
|
|
|
def token_dispatch(self,
|
|
hidden_states: torch.Tensor,
|
|
topk_weights: torch.Tensor,
|
|
topk_ids: torch.Tensor,
|
|
expert_map: Optional[torch.Tensor] = None,
|
|
log2phy: Optional[torch.Tensor] = None,
|
|
global_redundant_expert_num: int = 0,
|
|
shared_experts: Optional[Any] = None,
|
|
quantized_x_for_share: Optional[Any] = None,
|
|
dynamic_scale_for_share: Optional[Any] = None,
|
|
mc2_mask: Optional[torch.Tensor] = None,
|
|
apply_router_weight_on_input: bool = False,
|
|
with_quant: bool = False):
|
|
self.bsz, _ = hidden_states.shape
|
|
flatten_topk_ids = topk_ids.view(-1)
|
|
self.sorted_topk_ids = torch.argsort(flatten_topk_ids.float())
|
|
self.sorted_topk_ids = self.sorted_topk_ids.to(torch.int32)
|
|
sorted_hidden_states = hidden_states.index_select(
|
|
0, self.sorted_topk_ids // self.local_num_group)
|
|
|
|
experts_id = torch.arange(0,
|
|
self.local_num_experts,
|
|
dtype=topk_ids.dtype,
|
|
device=topk_ids.device)
|
|
num_tokens_per_expert = (
|
|
flatten_topk_ids.unsqueeze(-1) == experts_id).to(
|
|
torch.float32).sum(0)
|
|
topk_scales = topk_weights.view(-1).index_select(
|
|
0, self.sorted_topk_ids).unsqueeze(-1)
|
|
group_list = num_tokens_per_expert.cumsum(dim=0).to(torch.int64)
|
|
group_list_type = 0
|
|
return {
|
|
"group_list_type": group_list_type,
|
|
"hidden_states": sorted_hidden_states,
|
|
"group_list": group_list,
|
|
"topk_scales": topk_scales,
|
|
}
|
|
|
|
def token_combine(self,
|
|
hidden_states: torch.Tensor,
|
|
bias: torch.Tensor = None):
|
|
unsorted_topk_ids = torch.argsort(self.sorted_topk_ids.float()).to(
|
|
torch.int32)
|
|
unsorted_hidden_states = hidden_states.index_select(
|
|
0, unsorted_topk_ids)
|
|
final_hidden_states = unsorted_hidden_states.reshape(
|
|
self.bsz, self.top_k // self.ep_size, -1).sum(1)
|
|
return final_hidden_states
|
|
|
|
|
|
class TokenDispatcherWithAll2AllV(MoETokenDispatcher):
|
|
"""
|
|
The implementation of the AlltoAll-based token dispatcher, which handles token
|
|
dispatching on the sequence level instead of token level. The core of this implementation
|
|
lies in each device dispatching on the entire sequence, with the hidden state being partitioned.
|
|
"""
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.with_quant = False
|
|
self.num_local_experts = kwargs.get("num_local_experts", 0)
|
|
|
|
self.hidden_shape = None
|
|
self.topk_weights = None
|
|
self.input_splits = None
|
|
self.output_splits = None
|
|
self.hidden_shape_before_permute = None
|
|
|
|
# [tp_ep_size * ep_size, num_local_experts]. Represents the number of tokens sent
|
|
# to each local expert by all ranks.
|
|
self.num_global_tokens_per_local_expert = None
|
|
|
|
# cached intermediate tensors.
|
|
self.tokens_per_expert = None
|
|
self.global_input_tokens_local_experts_indices = None
|
|
|
|
assert self.num_local_experts > 0, "Expected at least one expert"
|
|
if self.num_local_experts > 1:
|
|
self.expert_ids_per_ep_rank = torch.tensor(
|
|
[i % self.num_local_experts for i in range(self.num_experts)],
|
|
dtype=torch.int32,
|
|
device=torch.npu.current_device(),
|
|
)
|
|
|
|
local_expert_indices_offset = (self.ep_rank * self.num_local_experts)
|
|
|
|
self.local_expert_indices = [
|
|
local_expert_indices_offset + i
|
|
for i in range(self.num_local_experts)
|
|
]
|
|
assert (len(self.local_expert_indices) == self.num_local_experts
|
|
), "Invalid local expert indices"
|
|
for i in range(len(self.local_expert_indices) - 1):
|
|
assert (self.local_expert_indices[i] ==
|
|
self.local_expert_indices[i + 1] -
|
|
1), "local_expert_indices must be continuous"
|
|
|
|
def token_dispatch(self,
|
|
hidden_states: torch.Tensor,
|
|
topk_weights: torch.Tensor,
|
|
topk_ids: torch.Tensor,
|
|
expert_map: Optional[torch.Tensor] = None,
|
|
log2phy: Optional[torch.Tensor] = None,
|
|
global_redundant_expert_num: int = 0,
|
|
shared_experts: Optional[Any] = None,
|
|
quantized_x_for_share: Optional[Any] = None,
|
|
dynamic_scale_for_share: Optional[Any] = None,
|
|
mc2_mask: Optional[torch.Tensor] = None,
|
|
apply_router_weight_on_input: bool = False,
|
|
with_quant: bool = False):
|
|
self.with_quant = with_quant
|
|
self.hidden_shape = hidden_states.shape
|
|
self.topk_weights = topk_weights
|
|
assert topk_weights.dim() == 2, "Expected 2D tensor for topk_weights"
|
|
assert topk_ids.dim() == 2, "Expected 2D tensor for routing map"
|
|
|
|
if log2phy is not None:
|
|
topk_ids = log2phy[topk_ids]
|
|
|
|
permutated_local_input_tokens, reversed_local_input_permutation_mapping, tokens_per_expert = self._dispatch_preprocess(
|
|
hidden_states, topk_ids)
|
|
self.reversed_local_input_permutation_mapping = reversed_local_input_permutation_mapping
|
|
|
|
dynamic_scale_after_all2all = None
|
|
if self.with_quant:
|
|
permutated_local_input_tokens, dynamic_scale = torch_npu.npu_dynamic_quant(
|
|
permutated_local_input_tokens)
|
|
|
|
_, dynamic_scale_after_all2all, permute2_ep_all_to_all_handle = async_all_to_all(
|
|
dynamic_scale,
|
|
self.output_splits,
|
|
self.input_splits,
|
|
self.ep_group,
|
|
)
|
|
permute2_ep_all_to_all_handle.wait()
|
|
dynamic_scale.untyped_storage().resize_(0)
|
|
|
|
_, global_input_tokens, permute1_ep_all_to_all_handle = async_all_to_all(
|
|
permutated_local_input_tokens,
|
|
self.output_splits,
|
|
self.input_splits,
|
|
self.ep_group,
|
|
)
|
|
permute1_ep_all_to_all_handle.wait()
|
|
permutated_local_input_tokens.untyped_storage().resize_(0)
|
|
|
|
global_input_tokens, dynamic_scale = self._dispatch_postprocess(
|
|
global_input_tokens, dynamic_scale_after_all2all)
|
|
return {
|
|
"hidden_states": global_input_tokens,
|
|
"group_list": tokens_per_expert,
|
|
"dynamic_scale": dynamic_scale,
|
|
"group_list_type": 1
|
|
}
|
|
|
|
def token_combine(self,
|
|
hidden_states: torch.Tensor,
|
|
bias: torch.Tensor = None):
|
|
assert bias is None, "Bias is not supported in MoEAlltoAllvTokenDispatcher."
|
|
|
|
hidden_states = self._combine_preprocess(hidden_states)
|
|
|
|
# Perform expert parallel AlltoAll communication
|
|
# hidden_states: [SEQL, H] -> [SEQL, H/TP]
|
|
_, permutated_local_input_tokens, handle = async_all_to_all(
|
|
hidden_states, self.input_splits, self.output_splits,
|
|
self.ep_group)
|
|
handle.wait()
|
|
hidden_states.untyped_storage().resize_(0)
|
|
|
|
output = self._combine_postprocess(permutated_local_input_tokens)
|
|
|
|
# these values are no longer used, so they need to be set to None for memory release.
|
|
self.input_splits = None
|
|
self.output_splits = None
|
|
self.num_global_tokens_per_local_expert = None
|
|
self.topk_weights = None
|
|
self.reversed_local_input_permutation_mapping = None
|
|
self.reversed_global_input_permutation_mapping = None
|
|
self.global_input_tokens_local_experts_indices = None
|
|
|
|
return output
|
|
|
|
def _dispatch_preprocess(self, hidden_states, topk_ids):
|
|
assert self.hidden_shape is not None
|
|
hidden_states = hidden_states.view(-1, self.hidden_shape[-1])
|
|
tokens_per_expert = self._preprocess(topk_ids)
|
|
|
|
self.hidden_shape_before_permute = hidden_states.shape
|
|
|
|
permutated_local_input_tokens, reversed_local_input_permutation_mapping = torch_npu.npu_moe_token_permute(
|
|
tokens=hidden_states,
|
|
indices=topk_ids,
|
|
num_out_tokens=self.num_out_tokens,
|
|
)
|
|
return permutated_local_input_tokens, reversed_local_input_permutation_mapping, tokens_per_expert
|
|
|
|
def _preprocess(self, topk_ids: torch.Tensor) -> torch.Tensor:
|
|
num_local_tokens_per_expert = torch.histc(topk_ids,
|
|
bins=self.num_experts,
|
|
min=0,
|
|
max=self.num_experts)
|
|
|
|
ep_size = self.ep_size
|
|
|
|
# Dropless
|
|
self.num_out_tokens = topk_ids.numel()
|
|
|
|
# ===================================================
|
|
# Calculate input_splits, output_splits for alltoall-v.
|
|
# ===================================================
|
|
self.input_splits = (num_local_tokens_per_expert.reshape(
|
|
ep_size,
|
|
self.num_local_experts).sum(axis=1).to(torch.device("cpu"),
|
|
non_blocking=True).numpy())
|
|
num_global_tokens_per_expert = gather_from_sequence_parallel_region(
|
|
num_local_tokens_per_expert,
|
|
group=self.ep_group).reshape(ep_size, self.num_experts)
|
|
self.num_global_tokens_per_local_expert = num_global_tokens_per_expert[:, self.local_expert_indices[
|
|
0]:self.local_expert_indices[-1] + 1]
|
|
if self.num_global_tokens_per_local_expert is None:
|
|
raise ValueError(
|
|
"num_global_tokens_per_local_expert must be set before sum.")
|
|
self.output_splits = (self.num_global_tokens_per_local_expert.sum(
|
|
axis=-1).to(torch.device("cpu"), non_blocking=True).numpy())
|
|
num_tokens_per_local_expert = self.num_global_tokens_per_local_expert.sum(
|
|
axis=0)
|
|
# ===================================================
|
|
# num_global_tokens_per_expert: [ep_size, num_experts]
|
|
# num_global_tokens_per_local_expert: [ep_size, num_local_experts]
|
|
# num_tokens_per_local_expert: [num_local_experts]
|
|
# ===================================================
|
|
|
|
if self.num_local_experts > 1:
|
|
if self.num_global_tokens_per_local_expert is None:
|
|
raise ValueError(
|
|
"num_global_tokens_per_local_expert must be set before operations."
|
|
)
|
|
self.global_input_tokens_local_experts_indices = torch.repeat_interleave(
|
|
self.expert_ids_per_ep_rank,
|
|
self.num_global_tokens_per_local_expert.ravel())
|
|
else:
|
|
# TODO: This full synchronization can be a performance bottleneck.
|
|
# A more granular sync (e.g., blocking D2H copies) should be investigated.
|
|
torch.npu.synchronize()
|
|
|
|
return num_tokens_per_local_expert
|
|
|
|
def _dispatch_postprocess(self, global_input_tokens, dynamic_scale=None):
|
|
# Early return if no local experts or no tokens
|
|
if self.num_local_experts <= 1:
|
|
return global_input_tokens, None
|
|
|
|
# Handle quantized case
|
|
if self.with_quant:
|
|
assert self.global_input_tokens_local_experts_indices is not None, \
|
|
"global_input_tokens_local_experts_indices must be initialized before calling _dispatch_postprocess"
|
|
expert_idx_2d = self.global_input_tokens_local_experts_indices.unsqueeze(
|
|
-1)
|
|
active_num = self.global_input_tokens_local_experts_indices.numel()
|
|
|
|
# Handle case with no active tokens
|
|
if active_num <= 0:
|
|
self.reversed_global_input_permutation_mapping = self.global_input_tokens_local_experts_indices
|
|
return global_input_tokens, dynamic_scale
|
|
|
|
# Process with active tokens
|
|
global_input_tokens, self.reversed_global_input_permutation_mapping, _, expanded_scale = torch_npu.npu_moe_init_routing_v2(
|
|
global_input_tokens,
|
|
expert_idx_2d,
|
|
scale=dynamic_scale,
|
|
active_num=active_num,
|
|
expert_capacity=0,
|
|
expert_num=self.num_local_experts,
|
|
expert_tokens_num_type=1,
|
|
expert_tokens_num_flag=True,
|
|
active_expert_range=[0, self.num_local_experts],
|
|
quant_mode=-1,
|
|
row_idx_type=0)
|
|
return global_input_tokens, expanded_scale
|
|
|
|
# Handle non-quantized case
|
|
global_input_tokens, self.reversed_global_input_permutation_mapping = torch_npu.npu_moe_token_permute(
|
|
global_input_tokens,
|
|
self.global_input_tokens_local_experts_indices)
|
|
return global_input_tokens, None
|
|
|
|
def _combine_preprocess(self, hidden_states):
|
|
# Unpermutation 2: expert output to AlltoAll input
|
|
if hidden_states.shape[0] > 0 and self.num_local_experts > 1:
|
|
hidden_states = torch_npu.npu_moe_token_unpermute(
|
|
hidden_states, self.reversed_global_input_permutation_mapping)
|
|
|
|
return hidden_states
|
|
|
|
def _combine_postprocess(self, permutated_local_input_tokens):
|
|
# Unpermutation 1: AlltoAll output to output
|
|
output = torch_npu.npu_moe_token_unpermute(
|
|
permuted_tokens=permutated_local_input_tokens,
|
|
sorted_indices=self.reversed_local_input_permutation_mapping.to(
|
|
torch.int32),
|
|
probs=self.topk_weights,
|
|
restore_shape=self.hidden_shape_before_permute)
|
|
|
|
# Reshape the output tensor
|
|
output = output.view(self.hidden_shape)
|
|
return output
|