mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 21:53:54 +08:00
This PR adds support for redundant experts in the EPLB. Key points: - Use global_num_experts = num_experts + num_redundant_experts consistently. - Backward compatible when num_redundant_experts=0. Tested On a 16-rank setup (W8A8) with static EPLB and expert_map_path, verifying router logits shape and successful requests. - vLLM version: v0.11.0rc3 - vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0 Signed-off-by: yechao237 <yechao20180411@gmail.com>
120 lines
4.5 KiB
Python
120 lines
4.5 KiB
Python
#
|
|
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# This file is a part of the vllm-ascend project.
|
|
#
|
|
# Todo: Once https://github.com/vllm-project/vllm/issues/22246 is merged in vllm. Remove eplb utils.
|
|
import random
|
|
|
|
import torch
|
|
from vllm.logger import logger
|
|
|
|
|
|
def determine_default_expert_map(global_expert_num, world_size, rank_id,
|
|
global_redundant_expert_num):
|
|
if world_size == 1:
|
|
local_ids = torch.arange(global_expert_num, dtype=torch.int32)
|
|
return (global_expert_num, local_ids)
|
|
|
|
local_num_experts = global_expert_num // world_size
|
|
|
|
expert_map = torch.full((global_expert_num, ), -1, dtype=torch.int32)
|
|
|
|
if rank_id < world_size - 1:
|
|
start = rank_id * local_num_experts
|
|
end = (rank_id + 1) * local_num_experts
|
|
local_count = local_num_experts
|
|
else:
|
|
start = rank_id * local_num_experts
|
|
end = global_expert_num
|
|
local_count = global_expert_num - rank_id * local_num_experts
|
|
|
|
if isinstance(local_count, int):
|
|
local_ids = torch.arange(local_count, dtype=torch.int32)
|
|
expert_map[start:end] = local_ids
|
|
|
|
return (local_count, expert_map)
|
|
|
|
|
|
def generate_log2phy_map(expert_map):
|
|
num_local_experts = expert_map.max() + 1
|
|
log2phy_map = expert_map.clone()
|
|
num_ranks, num_global_expert = log2phy_map.shape
|
|
|
|
row_indices = torch.arange(num_ranks).view(-1, 1).expand(num_ranks, \
|
|
num_global_expert) * num_local_experts
|
|
log2phy_map[log2phy_map != -1] += row_indices[log2phy_map != -1]
|
|
|
|
for idx in range(num_global_expert):
|
|
positive_rank_idx = torch.where(log2phy_map[:, idx] != -1)[0]
|
|
negative_rank_idx = torch.where(log2phy_map[:, idx] == -1)[0]
|
|
num_rank_holding_expert = positive_rank_idx.size(0)
|
|
|
|
if num_rank_holding_expert == 0:
|
|
log2phy_map[:, idx] = torch.full((num_ranks, ),
|
|
0,
|
|
dtype=log2phy_map.dtype)
|
|
|
|
if num_rank_holding_expert == 1:
|
|
log2phy_map[negative_rank_idx, idx] = torch.full(
|
|
(num_ranks - 1, ),
|
|
log2phy_map[positive_rank_idx, idx].item(),
|
|
dtype=log2phy_map.dtype)
|
|
else:
|
|
try:
|
|
random_list = [
|
|
random.choice(log2phy_map[positive_rank_idx, idx])
|
|
for _ in range(num_ranks - num_rank_holding_expert)
|
|
]
|
|
log2phy_map[negative_rank_idx,
|
|
idx] = torch.tensor(random_list,
|
|
dtype=log2phy_map.dtype)
|
|
except Exception as e:
|
|
logger.error(f"Fail to get log2phy_map: {str(e)}")
|
|
|
|
return log2phy_map
|
|
|
|
|
|
def determine_default_log2phy_map(global_expert_num, world_size, rank_id,
|
|
global_redundant_expert_num):
|
|
if world_size == 1:
|
|
local_ids = torch.arange(global_expert_num, dtype=torch.int32)
|
|
expert_map_all = local_ids.unsqueeze(0).expand(world_size, -1)
|
|
log2phy_map_all = generate_log2phy_map(expert_map_all)
|
|
return log2phy_map_all[rank_id]
|
|
|
|
local_num_experts = global_expert_num // world_size
|
|
|
|
expert_map_all = torch.full((world_size, global_expert_num),
|
|
-1,
|
|
dtype=torch.int32)
|
|
|
|
for r in range(world_size):
|
|
if r < world_size - 1:
|
|
start = r * local_num_experts
|
|
end = (r + 1) * local_num_experts
|
|
local_count = local_num_experts
|
|
else:
|
|
start = r * local_num_experts
|
|
end = global_expert_num
|
|
local_count = global_expert_num - r * local_num_experts
|
|
|
|
if isinstance(local_count, int):
|
|
local_ids = torch.arange(local_count, dtype=torch.int32)
|
|
expert_map_all[r, start:end] = local_ids
|
|
|
|
log2phy_map_all = generate_log2phy_map(expert_map_all)
|
|
|
|
return log2phy_map_all[rank_id]
|