mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 21:53:54 +08:00
### What this PR does / why we need it?
Add `__main__` guard to all offline examples.
- vLLM version: v0.9.2
- vLLM main:
76b494444f
---------
Signed-off-by: shen-shanshan <467638484@qq.com>
89 lines
2.8 KiB
Python
89 lines
2.8 KiB
Python
import os
|
|
|
|
import torch
|
|
from transformers import (AutoModelForCausalLM, AutoTokenizer,
|
|
PreTrainedTokenizer)
|
|
from vllm import LLM
|
|
|
|
os.environ["VLLM_USE_MODELSCOPE"] = "True"
|
|
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
|
|
|
|
|
|
def init_tokenizer_and_llm(model_name: str):
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
transformers_model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
embedding_layer = transformers_model.get_input_embeddings()
|
|
llm = LLM(model=model_name, enable_prompt_embeds=True)
|
|
return tokenizer, embedding_layer, llm
|
|
|
|
|
|
def get_prompt_embeds(chat: list[dict[str,
|
|
str]], tokenizer: PreTrainedTokenizer,
|
|
embedding_layer: torch.nn.Module):
|
|
token_ids = tokenizer.apply_chat_template(chat,
|
|
add_generation_prompt=True,
|
|
return_tensors='pt')
|
|
prompt_embeds = embedding_layer(token_ids).squeeze(0)
|
|
return prompt_embeds
|
|
|
|
|
|
def single_prompt_inference(llm: LLM, tokenizer: PreTrainedTokenizer,
|
|
embedding_layer: torch.nn.Module):
|
|
chat = [{
|
|
"role": "user",
|
|
"content": "Please tell me about the capital of France."
|
|
}]
|
|
prompt_embeds = get_prompt_embeds(chat, tokenizer, embedding_layer)
|
|
|
|
outputs = llm.generate({
|
|
"prompt_embeds": prompt_embeds,
|
|
})
|
|
|
|
print("\n[Single Inference Output]")
|
|
print("-" * 30)
|
|
for o in outputs:
|
|
print(o.outputs[0].text)
|
|
print("-" * 30)
|
|
|
|
|
|
def batch_prompt_inference(llm: LLM, tokenizer: PreTrainedTokenizer,
|
|
embedding_layer: torch.nn.Module):
|
|
chats = [[{
|
|
"role": "user",
|
|
"content": "Please tell me about the capital of France."
|
|
}],
|
|
[{
|
|
"role": "user",
|
|
"content": "When is the day longest during the year?"
|
|
}],
|
|
[{
|
|
"role": "user",
|
|
"content": "Where is bigger, the moon or the sun?"
|
|
}]]
|
|
|
|
prompt_embeds_list = [
|
|
get_prompt_embeds(chat, tokenizer, embedding_layer) for chat in chats
|
|
]
|
|
|
|
outputs = llm.generate([{
|
|
"prompt_embeds": embeds
|
|
} for embeds in prompt_embeds_list])
|
|
|
|
print("\n[Batch Inference Outputs]")
|
|
print("-" * 30)
|
|
for i, o in enumerate(outputs):
|
|
print(f"Q{i+1}: {chats[i][0]['content']}")
|
|
print(f"A{i+1}: {o.outputs[0].text}\n")
|
|
print("-" * 30)
|
|
|
|
|
|
def main():
|
|
model_name = "meta-llama/Llama-3.2-1B-Instruct"
|
|
tokenizer, embedding_layer, llm = init_tokenizer_and_llm(model_name)
|
|
single_prompt_inference(llm, tokenizer, embedding_layer)
|
|
batch_prompt_inference(llm, tokenizer, embedding_layer)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|