huangdong2022 3a53bbc508 [Feat]Qwen3 Moe supports npu_add_rms_norm_quant op by default, update op with bias, resolve conflict with weight prefetch (#3465)
### What this PR does / why we need it?
1.qwen3 moe uses add_rms_norm_quant op instead of 'add_rms_norm op and
quant op' during quantization scene.
2.torch_npu.add_rms_norm_quant op fixed accuracy while model weights is
quantized by anti_method m4, m4 quantization is asymmetric outlier
suppression method, it will generate none-zero norm bias,
add_rms_norm_quant op updated to add this parameter to calculate.
3. add torch-npu check

### Does this PR introduce _any_ user-facing change?
new feature works if torch_npu version >= torch_npu-2.7.1.dev20250919

### How was this patch tested?
1.no special parameters to set, no new envs to set. new feature works if
torch_npu version >= torch_npu-2.7.1.dev20250919
2.use qwen3 moe quantization model to test ,such as
Qwen3-235B-A22B-W8A8, Qwen3-30B-A3B-W8A8,
Qwen3-235B-A22B-Instruct-2507-m4 (anti_method m4)

- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

---------

Signed-off-by: h30027576 <huangdong51@huawei.com>
2025-10-17 09:30:51 +08:00
2025-08-11 22:21:29 +08:00
2025-10-12 07:39:45 +08:00
2025-10-17 09:04:31 +08:00
2025-02-05 10:53:12 +08:00
2025-10-09 10:41:19 +08:00
2025-01-29 02:44:13 -08:00
2025-10-10 14:09:53 +08:00
2025-10-10 14:09:53 +08:00
2025-10-10 14:09:53 +08:00
2025-10-10 14:09:53 +08:00

vllm-ascend

vLLM Ascend Plugin

| About Ascend | Documentation | #sig-ascend | Users Forum | Weekly Meeting |

English | 中文


Latest News 🔥

  • [2025/09] We released the new official version v0.9.1! Please follow the official guide to start deploy large scale Expert Parallelism (EP) on Ascend.
  • [2025/08] We hosted the vLLM Beijing Meetup with vLLM and Tencent! Please find the meetup slides here.
  • [2025/06] User stories page is now live! It kicks off with LLaMA-Factory/verl//TRL/GPUStack to demonstrate how vLLM Ascend assists Ascend users in enhancing their experience across fine-tuning, evaluation, reinforcement learning (RL), and deployment scenarios.
  • [2025/06] Contributors page is now live! All contributions deserve to be recorded, thanks for all contributors.
  • [2025/05] We've released first official version v0.7.3! We collaborated with the vLLM community to publish a blog post sharing our practice: Introducing vLLM Hardware Plugin, Best Practice from Ascend NPU.
  • [2025/03] We hosted the vLLM Beijing Meetup with vLLM team! Please find the meetup slides here.
  • [2025/02] vLLM community officially created vllm-project/vllm-ascend repo for running vLLM seamlessly on the Ascend NPU.
  • [2024/12] We are working with the vLLM community to support [RFC]: Hardware pluggable.

Overview

vLLM Ascend (vllm-ascend) is a community maintained hardware plugin for running vLLM seamlessly on the Ascend NPU.

It is the recommended approach for supporting the Ascend backend within the vLLM community. It adheres to the principles outlined in the [RFC]: Hardware pluggable, providing a hardware-pluggable interface that decouples the integration of the Ascend NPU with vLLM.

By using vLLM Ascend plugin, popular open-source models, including Transformer-like, Mixture-of-Expert, Embedding, Multi-modal LLMs can run seamlessly on the Ascend NPU.

Prerequisites

  • Hardware: Atlas 800I A2 Inference series, Atlas A2 Training series, Atlas 800I A3 Inference series, Atlas A3 Training series, Atlas 300I Duo (Experimental)
  • OS: Linux
  • Software:
    • Python >= 3.9, < 3.12
    • CANN >= 8.2.rc1 (Ascend HDK version refers to here)
    • PyTorch >= 2.7.1, torch-npu >= 2.7.1.dev20250724
    • vLLM (the same version as vllm-ascend)

Getting Started

Please use the following recommended versions to get started quickly:

Version Release type Doc
v0.11.0rc0 Latest release candidate QuickStart and Installation for more details
v0.9.1 Latest stable version QuickStart and Installation for more details

Contributing

See CONTRIBUTING for more details, which is a step-by-step guide to help you set up development environment, build and test.

We welcome and value any contributions and collaborations:

Branch

vllm-ascend has main branch and dev branch.

  • main: main branchcorresponds to the vLLM main branch, and is continuously monitored for quality through Ascend CI.
  • vX.Y.Z-dev: development branch, created with part of new releases of vLLM. For example, v0.7.3-dev is the dev branch for vLLM v0.7.3 version.

Below is maintained branches:

Branch Status Note
main Maintained CI commitment for vLLM main branch and vLLM v0.11.0 tag
v0.7.1-dev Unmaintained Only doc fixed is allowed
v0.7.3-dev Maintained CI commitment for vLLM 0.7.3 version, only bug fix is allowed and no new release tag any more.
v0.9.1-dev Maintained CI commitment for vLLM 0.9.1 version
rfc/feature-name Maintained Feature branches for collaboration

Please refer to Versioning policy for more details.

Weekly Meeting

License

Apache License 2.0, as found in the LICENSE file.

Description
Community maintained hardware plugin for vLLM on Ascend
Readme Apache-2.0 96 MiB
Languages
Python 84%
C++ 14.6%
Shell 1%
CMake 0.2%