mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 21:53:54 +08:00
### What this PR does / why we need it? Fix Qwen3-30B-A3B dp parallel hung issue when running with the dp parallel example. For large-parameter models of Qwen3-30B and above, weight loading alone takes 4 to 5 minutes. Therefore, the 5-minute timeout in the current example code implementation is too short, causing some DP instances to be killed prematurely and eventually stuck in the DP synchronization all-reduce operation. ### Does this PR introduce _any_ user-facing change? NA ### How was this patch tested? NA vLLM version: v0.11.0rc3 vLLM main: https://github.com/vllm-project/vllm/commit/releases/v0.11.0 - vLLM version: v0.11.0rc3 - vLLM main: https://github.com/vllm-project/vllm/commit/releases/v0.11.0 --------- Signed-off-by: leo-pony <nengjunma@outlook.com>
258 lines
8.4 KiB
Python
258 lines
8.4 KiB
Python
#
|
|
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
|
# Copyright 2023 The vLLM team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# This file is a part of the vllm-ascend project.
|
|
# Adapted from vllm-project/vllm/examples/offline_inference/data_parallel.py
|
|
#
|
|
"""
|
|
Usage:
|
|
Single node:
|
|
Dense models:
|
|
python examples/offline_data_parallel.py \
|
|
--model="Qwen/Qwen2.5-0.5B-Instruct" \
|
|
--dp-size=2 \
|
|
--tp-size=2
|
|
MOE models:
|
|
python examples/offline_data_parallel.py \
|
|
--model="ibm-research/PowerMoE-3b" \
|
|
--dp-size=2 \
|
|
--tp-size=2 \
|
|
--enable-expert-parallel
|
|
|
|
Multi-node:
|
|
Node 0 (assume the node has ip of 10.99.48.128):
|
|
python examples/offline_data_parallel.py \
|
|
--model="ibm-research/PowerMoE-3b" \
|
|
--dp-size=2 \
|
|
--tp-size=2 \
|
|
--node-size=2 \
|
|
--node-rank=0 \
|
|
--enable-expert-parallel \
|
|
--master-addr=10.99.48.128 \
|
|
--master-port=13345
|
|
Node 1:
|
|
python examples/offline_data_parallel.py \
|
|
--model="ibm-research/PowerMoE-3b" \
|
|
--dp-size=2 \
|
|
--tp-size=2 \
|
|
--node-size=2 \
|
|
--node-rank=1 \
|
|
--enable-expert-parallel \
|
|
--master-addr=10.99.48.128 \
|
|
--master-port=13345
|
|
"""
|
|
|
|
import contextlib
|
|
import gc
|
|
import os
|
|
from time import sleep
|
|
|
|
import torch
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.distributed.parallel_state import ( # noqa E402
|
|
destroy_distributed_environment, destroy_model_parallel)
|
|
from vllm.utils import get_open_port
|
|
|
|
os.environ["VLLM_USE_MODELSCOPE"] = "True"
|
|
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
|
|
|
|
def parse_args():
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(description="Data Parallel Inference")
|
|
parser.add_argument(
|
|
"--model",
|
|
type=str,
|
|
default="ibm-research/PowerMoE-3b",
|
|
help="Model name or path",
|
|
)
|
|
parser.add_argument("--dp-size",
|
|
type=int,
|
|
default=2,
|
|
help="Data parallel size")
|
|
parser.add_argument("--tp-size",
|
|
type=int,
|
|
default=1,
|
|
help="Tensor parallel size")
|
|
parser.add_argument("--node-size",
|
|
type=int,
|
|
default=1,
|
|
help="Total number of nodes")
|
|
parser.add_argument("--node-rank",
|
|
type=int,
|
|
default=0,
|
|
help="Rank of the current node")
|
|
parser.add_argument("--master-addr",
|
|
type=str,
|
|
default="",
|
|
help="Master node IP address")
|
|
parser.add_argument("--master-port",
|
|
type=int,
|
|
default=0,
|
|
help="Master node port")
|
|
parser.add_argument("--enforce-eager",
|
|
action="store_true",
|
|
help="Enforce eager mode execution.")
|
|
parser.add_argument("--trust-remote-code",
|
|
action="store_true",
|
|
help="Trust remote code.")
|
|
parser.add_argument("--enable-expert-parallel",
|
|
action="store_true",
|
|
help="Enable expert parallel, used in MOE models.")
|
|
return parser.parse_args()
|
|
|
|
|
|
def cleanup_env_and_memory():
|
|
destroy_model_parallel()
|
|
destroy_distributed_environment()
|
|
with contextlib.suppress(AssertionError):
|
|
torch.distributed.destroy_process_group()
|
|
gc.collect()
|
|
torch.npu.empty_cache()
|
|
torch.npu.reset_peak_memory_stats()
|
|
|
|
def main(
|
|
model,
|
|
dp_size,
|
|
local_dp_rank,
|
|
global_dp_rank,
|
|
dp_master_ip,
|
|
dp_master_port,
|
|
GPUs_per_dp_rank,
|
|
enable_expert_parallel,
|
|
enforce_eager,
|
|
trust_remote_code,
|
|
):
|
|
# DP only support on V1 engine
|
|
os.environ["VLLM_DP_RANK"] = str(global_dp_rank)
|
|
os.environ["VLLM_DP_RANK_LOCAL"] = str(local_dp_rank)
|
|
os.environ["VLLM_DP_SIZE"] = str(dp_size)
|
|
os.environ["VLLM_DP_MASTER_IP"] = dp_master_ip
|
|
os.environ["VLLM_DP_MASTER_PORT"] = str(dp_master_port)
|
|
|
|
# CUDA_VISIBLE_DEVICES for each DP rank is set automatically inside the
|
|
# engine processes.
|
|
|
|
# Sample prompts.
|
|
prompts = [
|
|
"Hello, my name is",
|
|
"The president of the United States is",
|
|
"The capital of France is",
|
|
"The future of AI is",
|
|
] * 100
|
|
|
|
# with DP, each rank should process different prompts.
|
|
# usually all the DP ranks process a full dataset,
|
|
# and each rank processes a different part of the dataset.
|
|
floor = len(prompts) // dp_size
|
|
remainder = len(prompts) % dp_size
|
|
|
|
# Distribute prompts into even groups.
|
|
def start(rank):
|
|
return rank * floor + min(rank, remainder)
|
|
|
|
prompts = prompts[start(global_dp_rank):start(global_dp_rank + 1)]
|
|
if len(prompts) == 0:
|
|
# if any rank has no prompts to process,
|
|
# we need to set a placeholder prompt
|
|
prompts = ["Placeholder"]
|
|
print(f"DP rank {global_dp_rank} needs to process {len(prompts)} prompts")
|
|
|
|
# Create a sampling params object.
|
|
# since we are doing data parallel, every rank can have different
|
|
# sampling params. here we set different max_tokens for different
|
|
# ranks for demonstration.
|
|
sampling_params = SamplingParams(temperature=0.8,
|
|
top_p=0.95,
|
|
max_tokens=[16, 20][global_dp_rank % 2])
|
|
|
|
# Create an LLM.
|
|
llm = LLM(
|
|
model=model,
|
|
tensor_parallel_size=GPUs_per_dp_rank,
|
|
enforce_eager=enforce_eager,
|
|
enable_expert_parallel=enable_expert_parallel,
|
|
trust_remote_code=trust_remote_code,
|
|
)
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
# Print the outputs.
|
|
for i, output in enumerate(outputs):
|
|
if i >= 5:
|
|
# print only 5 outputs
|
|
break
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(f"DP rank {global_dp_rank}, Prompt: {prompt!r}, "
|
|
f"Generated text: {generated_text!r}")
|
|
|
|
# Give engines time to pause their processing loops before exiting.
|
|
sleep(5)
|
|
del llm
|
|
cleanup_env_and_memory()
|
|
|
|
if __name__ == "__main__":
|
|
args = parse_args()
|
|
|
|
dp_size = args.dp_size
|
|
tp_size = args.tp_size
|
|
node_size = args.node_size
|
|
node_rank = args.node_rank
|
|
|
|
if node_size == 1:
|
|
dp_master_ip = "127.0.0.1"
|
|
dp_master_port = get_open_port()
|
|
else:
|
|
dp_master_ip = args.master_addr
|
|
dp_master_port = args.master_port
|
|
|
|
assert dp_size % node_size == 0, "dp_size should be divisible by node_size"
|
|
dp_per_node = dp_size // node_size
|
|
|
|
from multiprocessing import Process
|
|
|
|
procs = []
|
|
for local_dp_rank, global_dp_rank in enumerate(
|
|
range(node_rank * dp_per_node, (node_rank + 1) * dp_per_node)):
|
|
proc = Process(
|
|
target=main,
|
|
args=(
|
|
args.model,
|
|
dp_size,
|
|
local_dp_rank,
|
|
global_dp_rank,
|
|
dp_master_ip,
|
|
dp_master_port,
|
|
tp_size,
|
|
args.enable_expert_parallel,
|
|
args.enforce_eager,
|
|
args.trust_remote_code,
|
|
),
|
|
)
|
|
proc.start()
|
|
procs.append(proc)
|
|
exit_code = 0
|
|
for proc in procs:
|
|
proc.join(timeout=900)
|
|
if proc.exitcode is None:
|
|
print(
|
|
f"Killing process {proc.pid} that didn't stop within 15 minutes."
|
|
)
|
|
proc.kill()
|
|
exit_code = 1
|
|
elif proc.exitcode:
|
|
exit_code = proc.exitcode
|
|
|
|
exit(exit_code)
|