Files
vllm-ascend/examples/offline_data_parallel.py
leo-pony 3a27b15ddc [bugfix] Fix Qwen3-30B-A3B dp parallel hung issue when running with the dp parallel example (#3287)
### What this PR does / why we need it?
Fix Qwen3-30B-A3B dp parallel hung issue when running with the dp
parallel example.
For large-parameter models of Qwen3-30B and above, weight loading alone
takes 4 to 5 minutes. Therefore, the 5-minute timeout in the current
example code implementation is too short, causing some DP instances to
be killed prematurely and eventually stuck in the DP synchronization
all-reduce operation.

### Does this PR introduce _any_ user-facing change?
NA

### How was this patch tested?
NA

vLLM version: v0.11.0rc3
vLLM main: https://github.com/vllm-project/vllm/commit/releases/v0.11.0

- vLLM version: v0.11.0rc3
- vLLM main:
https://github.com/vllm-project/vllm/commit/releases/v0.11.0

---------

Signed-off-by: leo-pony <nengjunma@outlook.com>
2025-09-30 15:30:01 +08:00

258 lines
8.4 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
# Adapted from vllm-project/vllm/examples/offline_inference/data_parallel.py
#
"""
Usage:
Single node:
Dense models:
python examples/offline_data_parallel.py \
--model="Qwen/Qwen2.5-0.5B-Instruct" \
--dp-size=2 \
--tp-size=2
MOE models:
python examples/offline_data_parallel.py \
--model="ibm-research/PowerMoE-3b" \
--dp-size=2 \
--tp-size=2 \
--enable-expert-parallel
Multi-node:
Node 0 (assume the node has ip of 10.99.48.128):
python examples/offline_data_parallel.py \
--model="ibm-research/PowerMoE-3b" \
--dp-size=2 \
--tp-size=2 \
--node-size=2 \
--node-rank=0 \
--enable-expert-parallel \
--master-addr=10.99.48.128 \
--master-port=13345
Node 1:
python examples/offline_data_parallel.py \
--model="ibm-research/PowerMoE-3b" \
--dp-size=2 \
--tp-size=2 \
--node-size=2 \
--node-rank=1 \
--enable-expert-parallel \
--master-addr=10.99.48.128 \
--master-port=13345
"""
import contextlib
import gc
import os
from time import sleep
import torch
from vllm import LLM, SamplingParams
from vllm.distributed.parallel_state import ( # noqa E402
destroy_distributed_environment, destroy_model_parallel)
from vllm.utils import get_open_port
os.environ["VLLM_USE_MODELSCOPE"] = "True"
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
def parse_args():
import argparse
parser = argparse.ArgumentParser(description="Data Parallel Inference")
parser.add_argument(
"--model",
type=str,
default="ibm-research/PowerMoE-3b",
help="Model name or path",
)
parser.add_argument("--dp-size",
type=int,
default=2,
help="Data parallel size")
parser.add_argument("--tp-size",
type=int,
default=1,
help="Tensor parallel size")
parser.add_argument("--node-size",
type=int,
default=1,
help="Total number of nodes")
parser.add_argument("--node-rank",
type=int,
default=0,
help="Rank of the current node")
parser.add_argument("--master-addr",
type=str,
default="",
help="Master node IP address")
parser.add_argument("--master-port",
type=int,
default=0,
help="Master node port")
parser.add_argument("--enforce-eager",
action="store_true",
help="Enforce eager mode execution.")
parser.add_argument("--trust-remote-code",
action="store_true",
help="Trust remote code.")
parser.add_argument("--enable-expert-parallel",
action="store_true",
help="Enable expert parallel, used in MOE models.")
return parser.parse_args()
def cleanup_env_and_memory():
destroy_model_parallel()
destroy_distributed_environment()
with contextlib.suppress(AssertionError):
torch.distributed.destroy_process_group()
gc.collect()
torch.npu.empty_cache()
torch.npu.reset_peak_memory_stats()
def main(
model,
dp_size,
local_dp_rank,
global_dp_rank,
dp_master_ip,
dp_master_port,
GPUs_per_dp_rank,
enable_expert_parallel,
enforce_eager,
trust_remote_code,
):
# DP only support on V1 engine
os.environ["VLLM_DP_RANK"] = str(global_dp_rank)
os.environ["VLLM_DP_RANK_LOCAL"] = str(local_dp_rank)
os.environ["VLLM_DP_SIZE"] = str(dp_size)
os.environ["VLLM_DP_MASTER_IP"] = dp_master_ip
os.environ["VLLM_DP_MASTER_PORT"] = str(dp_master_port)
# CUDA_VISIBLE_DEVICES for each DP rank is set automatically inside the
# engine processes.
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
] * 100
# with DP, each rank should process different prompts.
# usually all the DP ranks process a full dataset,
# and each rank processes a different part of the dataset.
floor = len(prompts) // dp_size
remainder = len(prompts) % dp_size
# Distribute prompts into even groups.
def start(rank):
return rank * floor + min(rank, remainder)
prompts = prompts[start(global_dp_rank):start(global_dp_rank + 1)]
if len(prompts) == 0:
# if any rank has no prompts to process,
# we need to set a placeholder prompt
prompts = ["Placeholder"]
print(f"DP rank {global_dp_rank} needs to process {len(prompts)} prompts")
# Create a sampling params object.
# since we are doing data parallel, every rank can have different
# sampling params. here we set different max_tokens for different
# ranks for demonstration.
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
max_tokens=[16, 20][global_dp_rank % 2])
# Create an LLM.
llm = LLM(
model=model,
tensor_parallel_size=GPUs_per_dp_rank,
enforce_eager=enforce_eager,
enable_expert_parallel=enable_expert_parallel,
trust_remote_code=trust_remote_code,
)
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for i, output in enumerate(outputs):
if i >= 5:
# print only 5 outputs
break
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"DP rank {global_dp_rank}, Prompt: {prompt!r}, "
f"Generated text: {generated_text!r}")
# Give engines time to pause their processing loops before exiting.
sleep(5)
del llm
cleanup_env_and_memory()
if __name__ == "__main__":
args = parse_args()
dp_size = args.dp_size
tp_size = args.tp_size
node_size = args.node_size
node_rank = args.node_rank
if node_size == 1:
dp_master_ip = "127.0.0.1"
dp_master_port = get_open_port()
else:
dp_master_ip = args.master_addr
dp_master_port = args.master_port
assert dp_size % node_size == 0, "dp_size should be divisible by node_size"
dp_per_node = dp_size // node_size
from multiprocessing import Process
procs = []
for local_dp_rank, global_dp_rank in enumerate(
range(node_rank * dp_per_node, (node_rank + 1) * dp_per_node)):
proc = Process(
target=main,
args=(
args.model,
dp_size,
local_dp_rank,
global_dp_rank,
dp_master_ip,
dp_master_port,
tp_size,
args.enable_expert_parallel,
args.enforce_eager,
args.trust_remote_code,
),
)
proc.start()
procs.append(proc)
exit_code = 0
for proc in procs:
proc.join(timeout=900)
if proc.exitcode is None:
print(
f"Killing process {proc.pid} that didn't stop within 15 minutes."
)
proc.kill()
exit_code = 1
elif proc.exitcode:
exit_code = proc.exitcode
exit(exit_code)