Files
vllm-ascend/vllm_ascend/quantization/w8a8_dynamic.py
CaranLic 15b2e5c995 Remove unused row_idx in token_dispatcher (#3442)
### What this PR does / why we need it?
The `row_idx` parameter is no longer used since
PR[#2689](https://github.com/vllm-project/vllm-ascend/pull/2689), so
remove it across multiple files to remove unnecessary calculations and
parameter passing.

### Does this PR introduce _any_ user-facing change?
No
### How was this patch tested?
accuracy test passed for Qwen3 235B and DeepSeek V3 671B after this PR.


- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

---------

Signed-off-by: CaranLic <740821011@qq.com>
2025-10-15 09:08:31 +08:00

282 lines
12 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# This file is a part of the vllm-ascend project.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Any, Callable, Dict, Optional, Tuple, Union
import torch
import torch_npu
from vllm.config import CompilationLevel, get_current_vllm_config
from vllm.distributed import get_ep_group
from vllm.forward_context import get_forward_context
from vllm_ascend.ascend_config import get_ascend_config
from vllm_ascend.distributed.parallel_state import get_mc2_group
from vllm_ascend.ops.moe.experts_selector import select_experts
from vllm_ascend.utils import ACL_FORMAT_FRACTAL_NZ, is_enable_nz
class AscendW8A8DynamicLinearMethod:
"""Linear method for Ascend W8A8_DYNAMIC.
"""
def __init__(self):
self.transpose_weight = True
@staticmethod
def get_weight(input_size: int, output_size: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
params_dict = {
"weight": torch.empty(output_size, input_size, dtype=torch.int8)
}
return params_dict
@staticmethod
def get_pertensor_param(params_dtype: torch.dtype) -> Dict[str, Any]:
return {}
@staticmethod
def get_perchannel_param(
output_size: int,
params_dtype: torch.dtype,
) -> Dict[str, Any]:
params_dict = {}
params_dict["weight_scale"] = torch.empty(output_size,
1,
dtype=params_dtype)
params_dict["weight_offset"] = torch.empty(output_size,
1,
dtype=params_dtype)
return params_dict
def get_pergroup_param(self, input_size: int, output_size: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
return {}
@staticmethod
def apply(
layer: torch.nn.Module,
x: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],
bias: Optional[torch.Tensor] = None,
tp_rank: Optional[int] = 0,
) -> torch.Tensor:
config = getattr(layer, "_ascend_quant_config", {})
if not isinstance(x, tuple):
output_dtype = config.get("output_dtype", x.dtype)
quantized_x, dynamic_scale = torch_npu.npu_dynamic_quant(x)
else:
assert "output_dtype" in config.keys(), (
f"DynamicLinearMethod needs explicitly specified `output_dtype`"
f"for pre-quantized input, got config [{config}]")
output_dtype = config["output_dtype"]
quantized_x, dynamic_scale = x
pertoken_scale = (dynamic_scale
if config.get("pertoken_scale", True) else None)
output = torch_npu.npu_quant_matmul(
quantized_x,
layer.weight,
layer.weight_scale,
pertoken_scale=pertoken_scale,
bias=bias,
output_dtype=output_dtype,
)
return ((output, dynamic_scale)
if config.get("return_scale", False) else output)
def process_weights_after_loading(self, layer):
if self.transpose_weight:
layer.weight.data = layer.weight.data.transpose(0, 1).contiguous()
# cast quantized weight tensors in NZ format for higher inference speed
if is_enable_nz():
layer.weight.data = torch_npu.npu_format_cast(
layer.weight.data, ACL_FORMAT_FRACTAL_NZ)
layer.weight_scale.data = layer.weight_scale.data.flatten()
layer.weight_scale_fp32 = layer.weight_scale.data.to(torch.float32)
layer.weight_offset.data = layer.weight_offset.data.flatten()
class AscendW8A8DynamicFusedMoEMethod:
"""FusedMoe method for Ascend W8A8_DYNAMIC.
"""
def __init__(self):
self.transpose_weight = True
self.ep_group = get_ep_group()
vllm_config = get_current_vllm_config()
ascend_config = get_ascend_config()
self.use_aclgraph = (
vllm_config.compilation_config.level == CompilationLevel.PIECEWISE
and not vllm_config.model_config.enforce_eager
and not ascend_config.torchair_graph_config.enabled)
self.dynamic_eplb = ascend_config.dynamic_eplb
try:
device_group = get_mc2_group().device_group
# TODO: Try local_rank = ep_group.rank_in_group
local_rank = torch.distributed.get_rank(group=device_group)
backend = device_group._get_backend(torch.device("npu"))
self.moe_all_to_all_group_name = backend.get_hccl_comm_name(
local_rank)
except AttributeError:
self.moe_all_to_all_group_name = ""
@staticmethod
def get_weight(num_experts: int, intermediate_size_per_partition: int,
hidden_sizes: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
param_dict = {}
param_dict["w13_weight"] = torch.empty(num_experts,
2 *
intermediate_size_per_partition,
hidden_sizes,
dtype=torch.int8)
param_dict["w2_weight"] = torch.empty(num_experts,
hidden_sizes,
intermediate_size_per_partition,
dtype=torch.int8)
return param_dict
@staticmethod
def get_dynamic_quant_param(num_experts: int,
intermediate_size_per_partition: int,
hidden_sizes: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
param_dict = {}
param_dict["w13_weight_scale"] = torch.empty(
num_experts,
2 * intermediate_size_per_partition,
1,
dtype=params_dtype)
param_dict["w13_weight_offset"] = torch.empty(
num_experts,
2 * intermediate_size_per_partition,
1,
dtype=params_dtype)
param_dict["w2_weight_scale"] = torch.empty(num_experts,
hidden_sizes,
1,
dtype=params_dtype)
param_dict["w2_weight_offset"] = torch.empty(num_experts,
hidden_sizes,
1,
dtype=params_dtype)
return param_dict
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
is_prefill: bool = True,
enable_force_load_balance: bool = True,
log2phy: torch.Tensor = None,
global_redundant_expert_num: int = 0,
shared_experts: Optional[Any] = None,
quantized_x_for_share: Optional[Any] = None,
dynamic_scale_for_share: Optional[Any] = None,
**kwargs,
) -> torch.Tensor:
assert router_logits.shape[
1] == global_num_experts, "Number of global experts mismatch"
topk_weights, topk_ids = select_experts(
hidden_states=x,
router_logits=router_logits,
top_k=top_k,
use_grouped_topk=use_grouped_topk,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
global_num_experts=global_num_experts)
# this is a naive implementation for experts load balance so as
# to avoid accumulating too much tokens on a single rank.
# currently it is only activated when doing profile runs.
if enable_force_load_balance:
topk_ids = torch.randint_like(topk_ids, 0, global_num_experts)
if self.use_aclgraph:
moe_comm_method = get_forward_context().moe_comm_method
return moe_comm_method.fused_experts(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
use_int8_w8a8=True,
w1_scale=layer.w13_weight_scale,
w2_scale=layer.w2_weight_scale,
expert_map=expert_map,
dynamic_eplb=self.dynamic_eplb,
log2phy=log2phy,
global_redundant_expert_num=global_redundant_expert_num)
topk_weights = topk_weights.to(x.dtype)
moe_comm_method = get_forward_context().moe_comm_method
return moe_comm_method.fused_experts(
hidden_states=x,
w1=layer.w13_weight,
w1_scale=layer.w13_weight_scale_fp32,
w2=layer.w2_weight,
w2_scale=layer.w2_weight_scale,
topk_weights=topk_weights,
topk_ids=topk_ids,
use_int8_w8a8=True,
expert_map=expert_map,
log2phy=log2phy,
global_redundant_expert_num=global_redundant_expert_num,
shared_experts=shared_experts,
quantized_x_for_share=quantized_x_for_share,
dynamic_scale_for_share=dynamic_scale_for_share,
dynamic_eplb=self.dynamic_eplb)
def process_weights_after_loading(self, layer):
if self.transpose_weight:
layer.w13_weight.data = layer.w13_weight.data.transpose(
1, 2).contiguous()
layer.w2_weight.data = layer.w2_weight.data.transpose(
1, 2).contiguous()
if is_enable_nz():
torch_npu.npu_format_cast_(layer.w13_weight, ACL_FORMAT_FRACTAL_NZ)
torch_npu.npu_format_cast_(layer.w2_weight, ACL_FORMAT_FRACTAL_NZ)
layer.w13_weight_scale.data = layer.w13_weight_scale.data.view(
layer.w13_weight_scale.data.shape[0], -1)
layer.w13_weight_scale_fp32 = layer.w13_weight_scale.data.to(
torch.float32)
layer.w13_weight_offset.data = layer.w13_weight_offset.data.view(
layer.w13_weight_offset.data.shape[0], -1)
layer.w2_weight_scale.data = layer.w2_weight_scale.data.view(
layer.w2_weight_scale.data.shape[0], -1)
layer.w2_weight_offset.data = layer.w2_weight_offset.data.view(
layer.w2_weight_offset.data.shape[0], -1)