Files
vllm-ascend/vllm_ascend/torchair/torchair_attention.py
Mengqing Cao 1327f9be1c Fix some ci issue and refactor modelrunner (#2445)
### What this PR does / why we need it?
Fix some ci issue and refactor modelrunner

### Does this PR introduce _any_ user-facing change?
N/A

### How was this patch tested?
CI passed with existing test.

- vLLM version: v0.10.0
- vLLM main:
4d9c61993a

---------

Signed-off-by: wangli <wangli858794774@gmail.com>
Signed-off-by: MengqingCao <cmq0113@163.com>
Signed-off-by: weiguihua2 <weiguihua2@huawei.com>
Co-authored-by: wangli <wangli858794774@gmail.com>
Co-authored-by: weiguihua2 <weiguihua2@huawei.com>
2025-08-20 09:01:04 +08:00

451 lines
19 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
from dataclasses import dataclass
from typing import List, Optional, Tuple, Type
import numpy as np
import torch
import torch.nn as nn
import torch_npu
from vllm.attention.backends.abstract import (AttentionImpl, AttentionLayer,
AttentionType)
from vllm.attention.backends.utils import PAD_SLOT_ID
from vllm.config import VllmConfig
from vllm.utils import cdiv
from vllm_ascend.attention.attention_v1 import (AscendAttentionBackend,
AscendAttentionMetadataBuilder,
AscendAttentionState,
AscendMetadata)
from vllm_ascend.attention.utils import AscendCommonAttentionMetadata
from vllm_ascend.torchair.utils import TorchairCommonAttentionMetadata
from vllm_ascend.utils import (ACL_FORMAT_FRACTAL_NZ, aligned_16, is_310p,
nd_to_nz_2d)
class AscendAttentionTorchairBackend(AscendAttentionBackend):
accept_output_buffer: bool = True
@staticmethod
def get_name() -> str:
return "ASCEND_TORCHAIR"
@staticmethod
def get_impl_cls() -> Type["AscendAttentionTorchairBackendImpl"]:
return AscendAttentionTorchairBackendImpl
@staticmethod
def get_metadata_cls() -> Type["AscendTorchairMetadata"]:
return AscendTorchairMetadata
@staticmethod
def get_builder_cls() -> type["AscendAttentionTorchairMetadataBuilder"]:
return AscendAttentionTorchairMetadataBuilder
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> Tuple[int, ...]:
return (2, num_blocks, block_size, num_kv_heads * head_size)
@staticmethod
def get_bsh_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> Tuple[int, ...]:
return (2, num_blocks, block_size, num_kv_heads * head_size)
@dataclass
class AscendDecodeMetadata:
# Input positions for rotrary embeddings since for MLA the rotary
# position embeddings are applied inside the attention backend
input_positions: torch.Tensor
block_table: torch.Tensor
seq_lens: torch.Tensor
max_seq_lens: int
seq_lens_list: list[int]
attn_mask: Optional[torch.Tensor] = None
@dataclass
class AscendTorchairMetadata(AscendMetadata):
decode: Optional[AscendDecodeMetadata] = None
class AscendAttentionTorchairMetadataBuilder(AscendAttentionMetadataBuilder):
def __init__(
self,
vllm_config: VllmConfig,
device: torch.device,
):
super().__init__(vllm_config, device)
self.max_num_blocks_per_req = cdiv(
self.model_config.max_model_len,
self.vllm_config.cache_config.block_size)
self.max_blocks = (self.model_config.max_model_len +
self.vllm_config.cache_config.block_size -
1) // self.vllm_config.cache_config.block_size
def _get_graph_runner_block_tables(
self, num_seqs: int, block_tables: torch.Tensor) -> torch.Tensor:
max_blocks = self.max_blocks
graph_block_tables = torch.zeros((num_seqs, max_blocks),
dtype=block_tables.dtype,
device=block_tables.device)
num_blocks = block_tables.size(1)
if num_blocks <= max_blocks:
graph_block_tables[:num_seqs, :
num_blocks] = block_tables[:num_seqs, :
num_blocks]
else:
graph_block_tables[:num_seqs, :
max_blocks] = block_tables[:num_seqs, :
max_blocks]
return graph_block_tables[:, :max_blocks]
def build_torchair_graph_dummy(
self, common_attn_metadata: TorchairCommonAttentionMetadata
) -> AscendTorchairMetadata:
device = self.device
num_reqs = common_attn_metadata.num_reqs
block_table = torch.zeros((num_reqs, self.max_blocks),
dtype=torch.int32,
device=device)
block_table = self._get_graph_runner_block_tables(
num_reqs, block_table)
seq_lens = torch.ones(num_reqs, dtype=torch.int32, device=device)
input_positions = torch.zeros(num_reqs,
dtype=torch.int32,
device=device).long()
slot_mapping = torch.full((num_reqs, ),
PAD_SLOT_ID,
dtype=torch.int32,
device=device)
query_start_loc = torch.full((num_reqs, ),
-1,
dtype=torch.int32,
device=device)
decode_metadata = AscendDecodeMetadata(input_positions=input_positions,
block_table=block_table,
seq_lens=seq_lens,
seq_lens_list=seq_lens.tolist(),
max_seq_lens=1)
attn_metadata = AscendTorchairMetadata(
num_actual_tokens=common_attn_metadata.num_actual_tokens,
block_tables=block_table,
query_lens=0,
query_start_loc=query_start_loc,
seq_lens=seq_lens,
slot_mapping=slot_mapping,
attn_state=AscendAttentionState.DecodeOnly,
decode=decode_metadata)
return attn_metadata
def build(
self,
common_attn_metadata: AscendCommonAttentionMetadata,
model: nn.Module,
):
num_reqs = common_attn_metadata.num_reqs
num_actual_tokens = common_attn_metadata.num_actual_tokens
block_table = common_attn_metadata.block_table_tensor
block_table[:num_reqs, :self.max_num_blocks_per_req] = (
block_table[:num_reqs])
seq_lens = common_attn_metadata.seq_lens_cpu[:num_reqs]
slot_mapping = common_attn_metadata.slot_mapping_cpu[:
num_actual_tokens].to(
self.device,
non_blocking=
True)
attn_mask = common_attn_metadata.attn_mask
attn_state = common_attn_metadata.attn_state
if is_310p() and attn_state == AscendAttentionState.PrefillNoCache:
mask_nz = nd_to_nz_2d(attn_mask)
attn_mask = torch_npu.npu_format_cast(mask_nz.contiguous(), 29)
query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu[:
num_reqs
+ 1]
query_start_loc = query_start_loc_cpu.to(self.device,
non_blocking=True)
query_lens = query_start_loc_cpu[1:] - query_start_loc_cpu[:-1]
input_positions = common_attn_metadata.positions[:
num_actual_tokens].long(
)
decode_metadata = None
graph_pad_size = common_attn_metadata.graph_pad_size
use_torchair_graph = graph_pad_size > -1
if common_attn_metadata.attn_state in [
AscendAttentionState.DecodeOnly,
]:
max_seq_lens = seq_lens.max().item()
num_seqs = len(seq_lens)
if use_torchair_graph and common_attn_metadata.attn_state in [
AscendAttentionState.DecodeOnly,
]:
num_reqs_pad_size = 0
num_token_pad_size = 0
if graph_pad_size != 0:
pad_value = 0
num_token_pad_size = graph_pad_size - num_actual_tokens
num_reqs_pad_size = (
graph_pad_size //
common_attn_metadata.decode_token_per_req - num_reqs)
pad_value = 1
padded_seq_lens = seq_lens.tolist() + [pad_value
] * num_reqs_pad_size
seq_lens = torch.from_numpy(
np.array(padded_seq_lens).astype(np.int32))
padding = torch.full((num_token_pad_size, ),
PAD_SLOT_ID,
dtype=slot_mapping.dtype,
device=slot_mapping.device)
slot_mapping = torch.cat([slot_mapping, padding])
block_table_padding = torch.zeros(
(num_reqs_pad_size, ) + block_table.shape[1:],
dtype=block_table.dtype,
device=block_table.device)
block_table = torch.cat([block_table, block_table_padding],
dim=0)
block_table = self._get_graph_runner_block_tables(
num_seqs + num_reqs_pad_size, block_table)
padding_0 = torch.zeros(num_token_pad_size,
dtype=input_positions.dtype,
device=input_positions.device)
input_positions = torch.cat([input_positions, padding_0])
decode_metadata = AscendDecodeMetadata(
input_positions=input_positions,
block_table=block_table,
seq_lens=seq_lens,
seq_lens_list=seq_lens.tolist(),
max_seq_lens=max_seq_lens,
attn_mask=None)
attn_metadata = AscendTorchairMetadata(
decode=decode_metadata,
num_actual_tokens=num_actual_tokens,
block_tables=block_table,
query_start_loc=query_start_loc,
query_lens=query_lens,
seq_lens=seq_lens,
max_query_len=common_attn_metadata.max_query_len,
slot_mapping=slot_mapping,
attn_mask=attn_mask,
attn_state=attn_state,
enable_dbo_across_dp=common_attn_metadata.enable_dbo_across_dp)
return attn_metadata
class AscendAttentionTorchairBackendImpl(AttentionImpl):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],
**kwargs,
) -> None:
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
self.hidden_size = self.num_heads * self.head_size
self.kv_cache_dtype = kv_cache_dtype
self.sliding_window = sliding_window
if alibi_slopes is not None:
alibi_slopes = torch.tensor(alibi_slopes,
dtype=torch.float32,
device="npu")
self.alibi_slopes = alibi_slopes
self.attn_type = attn_type
assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
self.key_cache = None
self.value_cache = None
def forward(
self,
layer: AttentionLayer,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AscendTorchairMetadata,
output: Optional[torch.Tensor] = None,
trace_flag: bool = False,
) -> torch.Tensor:
"""Forward pass with Ascend attention.
Args:
query: shape = [batch_size, seq_len, num_heads * head_size]
key: shape = [batch_size, seq_len, num_kv_heads * head_size]
value: shape = [batch_size, seq_len, num_kv_heads * head_size]
kv_cache: shape = [2, num_blocks, block_size,
num_kv_heads, head_size]
key_cache = [num_blocks, block_size,
num_kv_heads, head_size]
value_cache = [num_blocks, block_size,
num_kv_heads, head_size]
attn_metadata: Metadata for attention.
Returns:
shape = [batch_size * seq_len, num_heads, head_size]
"""
num_tokens = query.shape[0]
use_kv_cache_quant = kv_cache is not None and kv_cache[0].numel(
) > 0 and kv_cache[0].dtype == torch.int8
if output is None:
output = torch.empty(num_tokens,
self.num_heads,
self.head_size,
dtype=query.dtype,
device=query.device)
if hasattr(layer, 'quant_method') and use_kv_cache_quant:
output = layer.quant_method.apply(layer, query, key, value,
kv_cache, attn_metadata,
self.attn_type, self.scale,
output)
return output.view(num_tokens, self.hidden_size)
if attn_metadata is None:
return output.view(num_tokens, self.hidden_size)
output = output.view(-1, self.num_heads, self.head_size)
assert layer._k_scale_float == 1.0 and layer._v_scale_float == 1.0
attn_type = self.attn_type
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"AscendAttentionTorchairBackendImpl")
if kv_cache is not None and kv_cache[0].numel() > 0:
key_cache, value_cache = kv_cache[0], kv_cache[1]
slots = attn_metadata.slot_mapping
block_size = key_cache.shape[1]
slots_indices = slots.reshape(-1, 1)
block_indices = slots_indices // block_size
slots_indices = slots_indices % block_size
indices = torch.cat((block_indices, slots_indices), dim=1)
torch_npu.npu_scatter_nd_update_(key_cache, indices, key)
torch_npu.npu_scatter_nd_update_(value_cache, indices, value)
if attn_metadata.attn_state == AscendAttentionState.PrefillNoCache:
assert attn_metadata is not None
assert attn_metadata.attn_mask is not None
mask = attn_metadata.attn_mask
# View q k v to BSH.
query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
if is_310p():
# align q k v output tensors
query = aligned_16(query)
key = aligned_16(key)
value = aligned_16(value)
output = aligned_16(output)
# do reformat in case of broadcasted tensors
mask = mask.repeat(attn_metadata.seq_lens.size(0), 1, 1, 1)
mask = torch_npu.npu_format_cast(mask.contiguous(),
ACL_FORMAT_FRACTAL_NZ)
torch_npu._npu_flash_attention(query=query,
key=key,
value=value,
mask=mask,
seq_len=attn_metadata.seq_lens,
scale_value=self.scale,
num_heads=self.num_heads,
num_kv_heads=self.num_kv_heads,
out=output)
output = output[:num_tokens, :, :]
elif attn_metadata.attn_state == AscendAttentionState.PrefillCacheHit:
assert attn_metadata is not None
assert attn_metadata.attn_mask is not None
compress_mask = attn_metadata.attn_mask
torch_npu._npu_flash_attention_qlens(
query=query,
key_cache=self.key_cache,
value_cache=self.value_cache,
block_table=attn_metadata.block_tables,
mask=compress_mask,
seq_len=attn_metadata.query_lens,
context_lens=attn_metadata.seq_lens,
num_kv_heads=self.num_kv_heads,
num_heads=self.num_heads,
scale_value=self.scale,
out=output)
elif attn_metadata.attn_state == AscendAttentionState.DecodeOnly:
decode_meta = attn_metadata.decode
assert decode_meta is not None
seq_lens = decode_meta.seq_lens_list
block_table = decode_meta.block_table
block_size = key_cache.shape[1]
query = query.view(num_tokens, 1,
self.num_heads * self.head_size).contiguous()
output = torch_npu.npu_incre_flash_attention(
query,
key_cache,
value_cache,
num_key_value_heads=self.num_kv_heads,
num_heads=self.num_heads,
actual_seq_lengths=seq_lens,
scale_value=self.scale,
block_table=block_table,
input_layout='BSH',
block_size=block_size)
else:
raise NotImplementedError(
"Torchair graph mode with non-MLA attention backend is still experimental."
"v1 scheduler(chunked prefill) is not supported at this moment. Please"
"setting 'ascend_scheduler_config':{'enabled':true} in additional_config"
"to use ascend scheduler.")
return output.view(num_tokens, self.hidden_size)