Files
vllm-ascend/vllm_ascend/quantization/w4a8_dynamic.py
anon189Ty 07e39620ea [Feat] Unquantized Linear to nz and control all nz-cast (#3356)
### What this PR does / why we need it?
Currently, when executing to the Linear layer of models in vLLM-Ascend,
the weights format is ND in unquantized case and skipped ascend case.
This PR supplements the execution logic for Linear layer. We use a new
global variable: VLLM_ASCEND_ENABLE_NZ. When VLLM_ASCEND_ENABLE_NZ=1 and
CANN version is 8.3, the weights of the Linear layer will be converted
to FRACTAL_NZ, in both unquantized case and skipped ascend case. We also
use VLLM_ASCEND_ENABLE_NZ to control the existing NZ conversion, such as
w8a8-quantized case.

### Does this PR introduce _any_ user-facing change?
Add a new global variable VLLM_ASCEND_ENABLE_NZ. If you want to use NZ
format, you should set VLLM_ASCEND_ENABLE_NZ=1.

### How was this patch tested?

- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

Signed-off-by: anon189Ty <Stari_Falcon@outlook.com>
2025-10-14 17:39:26 +08:00

403 lines
18 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# This file is a part of the vllm-ascend project.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Any, Callable, Dict, Optional
import numpy as np
import torch
import torch_npu
from vllm.config import get_current_vllm_config
from vllm.distributed import get_ep_group
from vllm.forward_context import get_forward_context
from vllm_ascend.ascend_config import get_ascend_config
from vllm_ascend.distributed.parallel_state import get_mc2_group
from vllm_ascend.ops.moe.experts_selector import select_experts
from vllm_ascend.utils import ACL_FORMAT_FRACTAL_NZ, is_enable_nz
class AscendW4A8DynamicLinearMethod:
"""Linear method for Ascend W4A8_DYNAMIC
"""
def __init__(self):
self.transpose_weight = True
try:
self.group_size = get_current_vllm_config(
).quant_config.quant_description.get("group_size", 256)
except AttributeError:
self.group_size = 256
@staticmethod
def get_weight(input_size: int, output_size: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
params_dict = {
"weight": torch.empty(output_size, input_size, dtype=torch.int8)
}
return params_dict
@staticmethod
def get_pertensor_param(params_dtype: torch.dtype) -> Dict[str, Any]:
return {}
@staticmethod
def get_perchannel_param(output_size: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
return {}
def get_pergroup_param(self, input_size: int, output_size: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
params_dict = {}
params_dict["weight_scale"] = torch.empty(output_size,
1,
dtype=params_dtype)
params_dict["weight_offset"] = torch.empty(output_size,
1,
dtype=params_dtype)
params_dict["weight_scale_second"] = torch.empty(output_size,
input_size //
self.group_size,
dtype=params_dtype)
params_dict["weight_offset_second"] = torch.empty(output_size,
input_size //
self.group_size,
dtype=params_dtype)
return params_dict
@staticmethod
def process_scale_second(weight: torch.Tensor, scale: torch.Tensor,
per_group_scale: torch.Tensor):
k, n = weight.shape
group_num, n = per_group_scale.shape
weight_high = weight.to(torch.float32).reshape(
group_num, -1, n) * per_group_scale.reshape(group_num, 1, n)
weight_high = weight_high.reshape(k, n)
bias = 8 * (weight_high.to(torch.float32) * scale).sum(dim=0)
antiquant_scale = (scale * per_group_scale).reshape(group_num, n)
return antiquant_scale.npu(), bias
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None,
tp_rank: Optional[int] = None,
) -> torch.Tensor:
return torch_npu.npu_weight_quant_batchmatmul(
x,
layer.weight,
antiquant_scale=layer.weight_scale_second.to(x.dtype),
antiquant_group_size=self.group_size,
)
def process_weights_after_loading(self, layer: torch.nn.Module):
if self.transpose_weight:
layer.weight.data = layer.weight.data.transpose(0, 1).contiguous()
layer.weight_scale.data = layer.weight_scale.data.flatten().to(
torch.float32)
layer.weight_offset.data = layer.weight_offset.data.flatten()
layer.weight_scale_second.data, scale_bias = self.process_scale_second(
layer.weight.data,
layer.weight_scale.data,
layer.weight_scale_second.data.transpose(0, 1).contiguous(),
)
param = torch.nn.Parameter(scale_bias, requires_grad=False)
layer.register_parameter("weight_scale_bias", param)
layer.weight.data = torch_npu.npu_convert_weight_to_int4pack(
layer.weight.data.to(torch.int32))
class AscendW4A8DynamicFusedMoEMethod:
"""FusedMoe method for Ascend W4A8_DYNAMIC.
"""
def __init__(self):
self.transpose_weight = True
self.ep_group = get_ep_group()
vllm_config = get_current_vllm_config()
self.group_size = vllm_config.quant_config.quant_description.get(
"group_size", 256)
# NOTE: the weights are quantized from bf16 to int4 through a per-channel quantization process
self.is_per_channel_weight = self.group_size == 0
quant_version = vllm_config.quant_config.quant_description.get(
"version", "0")
# NOTE: new quantize weights: 2 int4 pack into int8
self.new_quant_version = quant_version == "1.0.0"
self.tp_size = 1 if vllm_config.parallel_config.enable_expert_parallel else self.ep_group.world_size
self.dynamic_eplb = get_ascend_config().dynamic_eplb
if self.new_quant_version and self.tp_size > 16:
raise ValueError(
"The current weight does not support moe part tp>16.")
try:
device_group = get_mc2_group().device_group
# TODO: Try local_rank = ep_group.rank_in_group
local_rank = torch.distributed.get_rank(group=device_group)
backend = device_group._get_backend(torch.device("npu"))
self.moe_all_to_all_group_name = backend.get_hccl_comm_name(
local_rank)
except AttributeError:
self.moe_all_to_all_group_name = ""
def get_weight(self, num_experts: int,
intermediate_size_per_partition: int, hidden_sizes: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
param_dict = {}
if self.new_quant_version:
w13_output_size = intermediate_size_per_partition
w2_output_size = hidden_sizes // 2
else:
w13_output_size = 2 * intermediate_size_per_partition
w2_output_size = hidden_sizes
param_dict["w13_weight"] = torch.empty(num_experts,
w13_output_size,
hidden_sizes,
dtype=torch.int8)
param_dict["w2_weight"] = torch.empty(num_experts,
w2_output_size,
intermediate_size_per_partition,
dtype=torch.int8)
return param_dict
def get_dynamic_quant_param(self, num_experts: int,
intermediate_size_per_partition: int,
hidden_sizes: int,
params_dtype: torch.dtype) -> Dict[str, Any]:
param_dict = {}
param_dict["w13_weight_scale"] = torch.empty(
num_experts,
2 * intermediate_size_per_partition,
1,
dtype=torch.float32)
param_dict["w13_weight_offset"] = torch.empty(
num_experts,
2 * intermediate_size_per_partition,
1,
dtype=torch.float32)
param_dict["w2_weight_scale"] = torch.empty(num_experts,
hidden_sizes,
1,
dtype=torch.float32)
param_dict["w2_weight_offset"] = torch.empty(num_experts,
hidden_sizes,
1,
dtype=torch.float32)
if not self.is_per_channel_weight:
param_dict["w13_weight_scale_second"] = torch.empty(
num_experts,
2 * intermediate_size_per_partition,
hidden_sizes // self.group_size,
dtype=torch.float32)
param_dict["w13_weight_offset_second"] = torch.empty(
num_experts,
2 * intermediate_size_per_partition,
hidden_sizes // self.group_size,
dtype=torch.float32)
param_dict["w2_weight_scale_second"] = torch.empty(
num_experts,
hidden_sizes,
intermediate_size_per_partition // self.group_size,
dtype=torch.float32)
param_dict["w2_weight_offset_second"] = torch.empty(
num_experts,
hidden_sizes,
intermediate_size_per_partition // self.group_size,
dtype=torch.float32)
if self.new_quant_version:
param_dict["w13_scale_bias"] = torch.empty(
num_experts,
2 * intermediate_size_per_partition,
1,
dtype=torch.float32)
param_dict["w2_scale_bias"] = torch.empty(num_experts,
hidden_sizes,
16 // self.tp_size,
dtype=torch.float32)
return param_dict
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
is_prefill: bool = True,
enable_force_load_balance: bool = True,
log2phy: torch.Tensor = None,
global_redundant_expert_num: int = 0,
shared_experts: Optional[Any] = None,
quantized_x_for_share: Optional[Any] = None,
dynamic_scale_for_share: Optional[Any] = None,
**kwargs,
) -> torch.Tensor:
assert router_logits.shape[
1] == global_num_experts, "Number of global experts mismatch"
# NOTE: now npu_moe_gating_top_k can only support `group_count=256` pattern
topk_weights, topk_ids, row_idx = select_experts(
hidden_states=x,
router_logits=router_logits,
top_k=top_k,
use_grouped_topk=use_grouped_topk,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
global_num_experts=global_num_experts)
# this is a naive implementation for experts load balance so as
# to avoid accumulating too much tokens on a single rank.
# currently it is only activated when doing profile runs.
if enable_force_load_balance:
topk_ids = torch.randint_like(topk_ids, 0, global_num_experts)
topk_weights = topk_weights.to(x.dtype)
moe_comm_method = get_forward_context().moe_comm_method
return moe_comm_method.fused_experts(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
w1_scale=layer.w13_weight_scale,
w2_scale=layer.w2_weight_scale,
w1_scale_bias=layer.w13_scale_bias,
w2_scale_bias=layer.w2_scale_bias,
topk_weights=topk_weights,
topk_ids=topk_ids,
row_idx=row_idx,
use_int4_w4a8=True,
expert_map=expert_map,
log2phy=log2phy,
global_redundant_expert_num=global_redundant_expert_num,
shared_experts=shared_experts,
quantized_x_for_share=quantized_x_for_share,
dynamic_scale_for_share=dynamic_scale_for_share,
dynamic_eplb=self.dynamic_eplb)
def process_scale(self, weight: torch.Tensor, scale, per_group_scale):
scale = scale.transpose(1, 2).contiguous()
if self.is_per_channel_weight:
scale_np = scale.cpu().numpy()
scale_np.dtype = np.uint32
scale_uint64_tensor = torch.from_numpy(scale_np.astype(
np.int64)).npu()
return scale_uint64_tensor, None
per_group_scale = per_group_scale.transpose(1, 2).contiguous()
group_num, k, n = weight.shape
# the weight of the new version is reduced by half by pack n, so it needs to be restored
if self.new_quant_version:
n = n * 2
per_group_scale = per_group_scale.reshape(group_num, -1, n)
group_num, quantgroup_num, n = per_group_scale.shape
bias = None
if not self.new_quant_version:
weight_high = weight.to(torch.float32).reshape([group_num, quantgroup_num, -1, n]) * \
per_group_scale.reshape([group_num, quantgroup_num, 1, n])
weight_high = weight_high.reshape([group_num, k, n])
bias = 8 * (weight_high.to(torch.float32) * scale).sum(axis=1)
scale_fp32 = (scale * per_group_scale).to(torch.float16).to(
torch.float32)
scale_fp32_np = scale_fp32.cpu().numpy()
scale_fp32_np.dtype = np.uint32
sscale_uint64 = np.zeros((group_num, quantgroup_num, n * 2),
dtype=np.uint32)
sscale_uint64[..., ::2] = scale_fp32_np
sscale_uint64_buffer = np.frombuffer(sscale_uint64.tobytes(),
dtype=np.int64).copy()
sscale_uint64_tensor = torch.from_numpy(sscale_uint64_buffer).reshape(
group_num, quantgroup_num, n)
sscale_uint64_tensor = sscale_uint64_tensor.npu()
return sscale_uint64_tensor, bias
def update_bias(self, layer, w13_bias, w2_bias):
if self.new_quant_version:
layer.w13_scale_bias.data = layer.w13_scale_bias.data.transpose(
1, 2).contiguous().sum(axis=1)
layer.w2_scale_bias.data = layer.w2_scale_bias.data.transpose(
1, 2).contiguous().sum(axis=1)
else:
w13_scale_bias = torch.nn.Parameter(w13_bias, requires_grad=False)
layer.register_parameter("w13_scale_bias", w13_scale_bias)
w2_scale_bias = torch.nn.Parameter(w2_bias, requires_grad=False)
layer.register_parameter("w2_scale_bias", w2_scale_bias)
def pack_to_int32(self, weight: torch.Tensor):
if self.new_quant_version:
# pack 4 int8(int4*2) to int32, because in pytorch, we need to use int32 to represent int4
assert weight.shape[
-1] % 4 == 0, "the last dim of weight needs to be divided by 4"
return weight.view(torch.int32).contiguous()
else:
return torch_npu.npu_quantize(weight.to(torch.float32),
torch.tensor([1.]).npu(), None,
torch.quint4x2, -1, False)
def process_weights_after_loading(self, layer):
if self.transpose_weight:
layer.w13_weight.data = layer.w13_weight.data.transpose(
1, 2).contiguous()
layer.w2_weight.data = layer.w2_weight.data.transpose(
1, 2).contiguous()
w13_weight_scale_second = layer.w13_weight_scale_second.data if hasattr(
layer, "w13_weight_scale_second") else None
w2_weight_scale_second = layer.w2_weight_scale_second.data if hasattr(
layer, "w2_weight_scale_second") else None
layer.w13_weight_scale.data, w13_bias = self.process_scale(
layer.w13_weight, layer.w13_weight_scale.data,
w13_weight_scale_second)
layer.w2_weight_scale.data, w2_bias = self.process_scale(
layer.w2_weight, layer.w2_weight_scale.data,
w2_weight_scale_second)
if hasattr(layer, "w13_weight_scale_second"):
# scale_second is no longer used, release this part of the memory
del layer.w13_weight_scale_second
del layer.w2_weight_scale_second
del layer.w13_weight_offset_second
del layer.w2_weight_offset_second
self.update_bias(layer, w13_bias, w2_bias)
if is_enable_nz():
layer.w13_weight.data = torch_npu.npu_format_cast(
layer.w13_weight.data, ACL_FORMAT_FRACTAL_NZ)
layer.w2_weight.data = torch_npu.npu_format_cast(
layer.w2_weight.data, ACL_FORMAT_FRACTAL_NZ)
layer.w13_weight.data = self.pack_to_int32(layer.w13_weight.data)
layer.w2_weight.data = self.pack_to_int32(layer.w2_weight.data)