Files
vllm-ascend/vllm_ascend/ops/linear.py
anon189Ty 07e39620ea [Feat] Unquantized Linear to nz and control all nz-cast (#3356)
### What this PR does / why we need it?
Currently, when executing to the Linear layer of models in vLLM-Ascend,
the weights format is ND in unquantized case and skipped ascend case.
This PR supplements the execution logic for Linear layer. We use a new
global variable: VLLM_ASCEND_ENABLE_NZ. When VLLM_ASCEND_ENABLE_NZ=1 and
CANN version is 8.3, the weights of the Linear layer will be converted
to FRACTAL_NZ, in both unquantized case and skipped ascend case. We also
use VLLM_ASCEND_ENABLE_NZ to control the existing NZ conversion, such as
w8a8-quantized case.

### Does this PR introduce _any_ user-facing change?
Add a new global variable VLLM_ASCEND_ENABLE_NZ. If you want to use NZ
format, you should set VLLM_ASCEND_ENABLE_NZ=1.

### How was this patch tested?

- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

Signed-off-by: anon189Ty <Stari_Falcon@outlook.com>
2025-10-14 17:39:26 +08:00

457 lines
18 KiB
Python

# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# This file is a part of the vllm-ascend project.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To customize linear communication groups or forward of classes in this file,
extend new linear operations in linear_op.py.
The classes in this file should not be modified, including AscendQKVParallelLinear,
AscendMergedColumnParallelLinear, AscendMergedColumnParallelLinear,
AscendRowParallelLinear and AscendColumnParallelLinear.
"""
from typing import Optional, Union
import torch
import torch.nn as nn
import torch_npu
from torch.nn.parameter import Parameter
from vllm.distributed import divide
from vllm.model_executor.layers.linear import ( # noqa
WEIGHT_LOADER_V2_SUPPORTED, ColumnParallelLinear, LinearBase,
MergedColumnParallelLinear, QKVParallelLinear, QuantizeMethodBase,
ReplicatedLinear, RowParallelLinear, UnquantizedLinearMethod)
from vllm.model_executor.layers.quantization.base_config import \
QuantizationConfig
from vllm.model_executor.utils import set_weight_attrs
from vllm_ascend.ops.linear_op import get_parallel_op, get_replicated_op
from vllm_ascend.utils import ACL_FORMAT_FRACTAL_NZ, is_enable_nz
class AscendUnquantizedLinearMethod(UnquantizedLinearMethod):
"""Linear method without quantization"""
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
super().process_weights_after_loading(layer)
if is_enable_nz() and torch.version.cann.startswith("8.3"):
layer.weight.data = torch_npu.npu_format_cast(
layer.weight.data, ACL_FORMAT_FRACTAL_NZ)
# TODO(realliujiaxu): Remove this class after linear of vllm supports custom comm group
class AscendLinearBase(LinearBase):
def __init__(
self,
input_size: int,
output_size: int,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
*,
return_bias: bool = True,
disable_tp: bool = False,
):
nn.Module.__init__(self)
# Keep input parameters
self.input_size = input_size
self.output_size = output_size
self.skip_bias_add = skip_bias_add
if params_dtype is None:
params_dtype = torch.get_default_dtype()
self.params_dtype = params_dtype
self.quant_config = quant_config
self.prefix = prefix
if quant_config is None:
self.quant_method: Optional[
QuantizeMethodBase] = AscendUnquantizedLinearMethod()
else:
self.quant_method = quant_config.get_quant_method(self,
prefix=prefix)
self.return_bias = return_bias
self.disable_tp = disable_tp
class AscendQKVParallelLinear(QKVParallelLinear):
"""Linear layers for the attention's QKV transformation.
Linear layers for the linear transformation of the query, key, and value
vectors in the attention layer. The weight matrix is concatenated along
the output dimension. The layer is parallelized along the head dimension.
When the number of key/value heads is smaller than the number of query
heads (e.g., multi-query/grouped-query attention), the key/value head may
be replicated while the query heads are partitioned.
"""
def __init__(
self,
hidden_size: int,
head_size: int,
total_num_heads: int,
total_num_kv_heads: Optional[int] = None,
bias: bool = True,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
*,
return_bias: bool = True,
disable_tp: bool = False,
):
self.custom_op, _, tp_size = get_parallel_op(disable_tp, prefix, self,
"column")
# TODO(realliujiaxu): Replace the initialization code below with super().__init__ after linear of vllm supports custom comm group
self.hidden_size = hidden_size
self.head_size = head_size
self.total_num_heads = total_num_heads
if total_num_kv_heads is None:
total_num_kv_heads = total_num_heads
self.total_num_kv_heads = total_num_kv_heads
# Divide the weight matrix along the last dimension.
self.num_heads = divide(self.total_num_heads, tp_size)
if tp_size >= self.total_num_kv_heads:
self.num_kv_heads = 1
self.num_kv_head_replicas = divide(tp_size,
self.total_num_kv_heads)
else:
self.num_kv_heads = divide(self.total_num_kv_heads, tp_size)
self.num_kv_head_replicas = 1
input_size = self.hidden_size
output_size = (self.num_heads +
2 * self.num_kv_heads) * tp_size * self.head_size
self.output_sizes = [
self.num_heads * self.head_size * tp_size, # q_proj
self.num_kv_heads * self.head_size * tp_size, # k_proj
self.num_kv_heads * self.head_size * tp_size, # v_proj
]
AscendColumnParallelLinear.__init__(self,
input_size=input_size,
output_size=output_size,
bias=bias,
gather_output=False,
skip_bias_add=skip_bias_add,
params_dtype=params_dtype,
quant_config=quant_config,
prefix=prefix,
return_bias=return_bias,
disable_tp=disable_tp)
def forward(
self,
input_,
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
if self.custom_op is not None:
return self.custom_op.apply(input_)
return super().forward(input_)
class AscendMergedColumnParallelLinear(MergedColumnParallelLinear):
"""Packed linear layers with column parallelism.
Similar to ColumnParallelLinear, but the weight matrix is concatenated
along the output dimension. When the weight matrix is loaded, the
different partitions are sharded separately.
Use the MLP tensor parallelism group in the MLP module,
and the original TP group in other modules.
"""
def __init__(
self,
input_size: int,
output_sizes: list[int],
bias: bool = True,
gather_output: bool = False,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
*,
return_bias: bool = True,
disable_tp: bool = False,
):
self.custom_op, self.tp_rank, self.tp_size = get_parallel_op(
disable_tp, prefix, self, "column")
# TODO(realliujiaxu): Replace the initialization code below with super().__init__ after linear of vllm supports custom comm group
self.output_sizes = output_sizes
assert all(output_size % self.tp_size == 0
for output_size in output_sizes)
AscendColumnParallelLinear.__init__(self,
input_size=input_size,
output_size=sum(output_sizes),
bias=bias,
gather_output=gather_output,
skip_bias_add=skip_bias_add,
params_dtype=params_dtype,
quant_config=quant_config,
prefix=prefix,
return_bias=return_bias,
disable_tp=disable_tp)
def forward(
self,
input_,
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
if self.custom_op is not None:
return self.custom_op.apply(input_)
return super().forward(input_)
class AscendRowParallelLinear(RowParallelLinear):
"""Linear layer with row parallelism.
Use the MLP tensor parallelism group in the MLP module,
and the original TP group in other modules.
"""
def __init__(
self,
input_size: int,
output_size: int,
bias: bool = True,
input_is_parallel: bool = True,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
reduce_results: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
*,
return_bias: bool = True,
disable_tp: bool = False,
):
self.custom_op, self.tp_rank, self.tp_size = get_parallel_op(
disable_tp, prefix, self, "row")
# TODO(realliujiaxu): Replace the initialization code below with super().__init__ after linear of vllm supports custom comm group
# Divide the weight matrix along the first dimension.
self.input_size_per_partition = divide(input_size, self.tp_size)
self.output_size_per_partition = output_size
self.output_partition_sizes = [output_size]
AscendLinearBase.__init__(self,
input_size,
output_size,
skip_bias_add,
params_dtype,
quant_config,
prefix,
return_bias=return_bias,
disable_tp=disable_tp)
self.input_is_parallel = input_is_parallel
self.reduce_results = reduce_results
assert self.quant_method is not None
self.quant_method.create_weights(
layer=self,
input_size_per_partition=self.input_size_per_partition,
output_partition_sizes=self.output_partition_sizes,
input_size=self.input_size,
output_size=self.output_size,
params_dtype=self.params_dtype,
weight_loader=(
self.weight_loader_v2 if self.quant_method.__class__.__name__
in WEIGHT_LOADER_V2_SUPPORTED else self.weight_loader))
if not reduce_results and (bias and not skip_bias_add):
raise ValueError("When not reduce the results, adding bias to the "
"results can lead to incorrect results")
if bias:
self.bias = Parameter(
torch.empty(self.output_size, dtype=params_dtype))
set_weight_attrs(self.bias, {
"output_dim": 0,
"weight_loader": self.weight_loader,
})
else:
self.register_parameter("bias", None)
if self.custom_op is not None:
self.custom_op.update_attrs()
def forward(
self,
input_,
is_prefill: bool = True,
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
if self.custom_op is not None:
return self.custom_op.apply(input_)
return super().forward(input_)
class AscendColumnParallelLinear(ColumnParallelLinear):
"""Linear layer with column parallelism.
Use the MLP tensor parallelism group in the MLP module,
and the original TP group in other modules.
"""
def __init__(
self,
input_size: int,
output_size: int,
bias: bool = True,
gather_output: bool = False,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
output_sizes: Optional[list[int]] = None,
prefix: str = "",
*,
return_bias: bool = True,
disable_tp: bool = False,
):
self.custom_op, self.tp_rank, self.tp_size = get_parallel_op(
disable_tp, prefix, self, "column")
# TODO(realliujiaxu): Replace the initialization code below with super().__init__ after linear of vllm supports custom comm group
self.input_size_per_partition = input_size
self.output_size_per_partition = divide(output_size, self.tp_size)
self.output_partition_sizes = [self.output_size_per_partition]
# If QKV or MergedColumn, use output size of each partition.
if hasattr(self, "output_sizes"):
self.output_partition_sizes = [
divide(output_size, self.tp_size)
for output_size in self.output_sizes
]
AscendLinearBase.__init__(self,
input_size,
output_size,
skip_bias_add,
params_dtype,
quant_config,
prefix,
return_bias=return_bias,
disable_tp=disable_tp)
self.gather_output = gather_output
if output_sizes is None:
output_sizes = [output_size]
assert self.quant_method is not None
self.quant_method.create_weights(
layer=self,
input_size_per_partition=self.input_size_per_partition,
output_partition_sizes=self.output_partition_sizes,
input_size=self.input_size,
output_size=self.output_size,
params_dtype=self.params_dtype,
weight_loader=(
self.weight_loader_v2 if self.quant_method.__class__.__name__
in WEIGHT_LOADER_V2_SUPPORTED else self.weight_loader))
if bias:
self.bias = Parameter(
torch.empty(self.output_size_per_partition,
dtype=params_dtype))
set_weight_attrs(self.bias, {
"output_dim": 0,
"weight_loader": self.weight_loader,
})
else:
self.register_parameter("bias", None)
if self.custom_op is not None:
self.custom_op.update_attrs()
def forward(
self,
input_,
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
if self.custom_op is not None:
return self.custom_op.apply(input_)
return super().forward(input_)
class AscendReplicatedLinear(ReplicatedLinear):
"""Ascend Replicated linear layer.
Args:
input_size: input dimension of the linear layer.
output_size: output dimension of the linear layer.
bias: If true, add bias.
skip_bias_add: If true, skip adding bias but instead return it.
params_dtype: Data type for the parameters.
quant_config: Quantization configure.
prefix: The name of the layer in the state dict, including all parents
(e.g. model.layers.0.qkv_proj)
return_bias: If true, return bias together with outputs in forward pass.
disable_tp: Take no effect for replicated linear layers.
"""
def __init__(
self,
input_size: int,
output_size: int,
bias: bool = True,
skip_bias_add: bool = False,
params_dtype: Optional[torch.dtype] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
*,
return_bias: bool = True,
disable_tp: bool = False,
):
self.custom_op = get_replicated_op(disable_tp, prefix, self)
# If MergedReplicatedLinear, use output size of each partition.
if hasattr(self, "output_sizes"):
self.output_partition_sizes = self.output_sizes
else:
self.output_partition_sizes = [output_size]
AscendLinearBase.__init__(self,
input_size,
output_size,
skip_bias_add,
params_dtype,
quant_config,
prefix=prefix,
return_bias=return_bias,
disable_tp=disable_tp)
# All the linear layer supports quant method.
assert self.quant_method is not None
self.quant_method.create_weights(self,
self.input_size, [self.output_size],
self.input_size,
self.output_size,
self.params_dtype,
weight_loader=self.weight_loader)
if bias:
self.bias = Parameter(
torch.empty(self.output_size, dtype=self.params_dtype))
set_weight_attrs(self.bias, {
"output_dim": 0,
"weight_loader": self.weight_loader,
})
else:
self.register_parameter("bias", None)
if self.custom_op is not None:
self.custom_op.update_attrs()
def forward(
self,
input_,
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[Parameter]]]:
if self.custom_op is not None:
return self.custom_op.apply(input_)
return super().forward(input_)