Files
vllm-ascend/vllm_ascend/attention/mla_v1.py
anon189Ty 07e39620ea [Feat] Unquantized Linear to nz and control all nz-cast (#3356)
### What this PR does / why we need it?
Currently, when executing to the Linear layer of models in vLLM-Ascend,
the weights format is ND in unquantized case and skipped ascend case.
This PR supplements the execution logic for Linear layer. We use a new
global variable: VLLM_ASCEND_ENABLE_NZ. When VLLM_ASCEND_ENABLE_NZ=1 and
CANN version is 8.3, the weights of the Linear layer will be converted
to FRACTAL_NZ, in both unquantized case and skipped ascend case. We also
use VLLM_ASCEND_ENABLE_NZ to control the existing NZ conversion, such as
w8a8-quantized case.

### Does this PR introduce _any_ user-facing change?
Add a new global variable VLLM_ASCEND_ENABLE_NZ. If you want to use NZ
format, you should set VLLM_ASCEND_ENABLE_NZ=1.

### How was this patch tested?

- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

Signed-off-by: anon189Ty <Stari_Falcon@outlook.com>
2025-10-14 17:39:26 +08:00

1133 lines
48 KiB
Python

from dataclasses import dataclass
from typing import (TYPE_CHECKING, ClassVar, NamedTuple, Optional, Tuple, Type,
TypeVar)
import torch
import torch_npu
from torch import nn
from vllm.attention.backends.abstract import (AttentionBackend,
AttentionMetadata,
MLAAttentionImpl)
from vllm.config import VllmConfig, get_current_vllm_config
from vllm.distributed import get_tensor_model_parallel_world_size, get_tp_group
from vllm.forward_context import ForwardContext, get_forward_context
from vllm.model_executor.layers.linear import (LinearBase,
UnquantizedLinearMethod)
from vllm.utils import cdiv, round_down
from vllm.v1.attention.backends.utils import AttentionCGSupport
from vllm_ascend.ascend_config import get_ascend_config
from vllm_ascend.attention.attention_v1 import AscendAttentionState
from vllm_ascend.attention.utils import (AscendCommonAttentionMetadata,
maybe_save_kv_layer_to_connector,
split_decodes_and_prefills,
wait_for_kv_layer_from_connector)
from vllm_ascend.compilation.acl_graph import get_graph_params
from vllm_ascend.multistream.base import MSAttentionMetadataSplitConfig
from vllm_ascend.multistream.context import get_multistream_comm_context
from vllm_ascend.multistream.ms_split import model_input_split_v1_mla_attn
from vllm_ascend.ops.weight_prefetch import maybe_npu_prefetch
from vllm_ascend.utils import (ACL_FORMAT_FRACTAL_ND, ACL_FORMAT_FRACTAL_NZ,
is_enable_nz)
from vllm_ascend.worker.npu_input_batch import InputBatch
if TYPE_CHECKING:
from vllm.v1.core.sched.output import SchedulerOutput
class AscendMLABackend(AttentionBackend):
accept_output_buffer: bool = True
@staticmethod
def get_name() -> str:
return "ASCEND_MLA"
@staticmethod
def get_metadata_cls() -> type["AttentionMetadata"]:
return AscendMLAMetadata
@staticmethod
def get_builder_cls():
return AscendMLAMetadataBuilder
@staticmethod
def get_kv_cache_shape(num_blocks: int, block_size: int, num_kv_heads: int,
head_size: int) -> tuple[int, ...]:
return (num_blocks, block_size, num_kv_heads, head_size)
@staticmethod
def get_impl_cls() -> Type["MLAAttentionImpl"]:
return AscendMLAImpl
@dataclass
class AscendMLAPrefillMetadata:
""" Prefill Specific Metadata for Ascend"""
@dataclass
class ChunkedContextMetadata:
# New for MLA (compared to FlashAttention)
# For handling chunked prefill
cu_seq_lens: torch.Tensor
starts: torch.Tensor
seq_tot: list[int]
max_seq_lens: list[int]
workspace: torch.Tensor
chunk_seq_lens: torch.Tensor
attn_mask: torch.Tensor
query_lens: list[int]
seq_lens: list[int]
context_lens: torch.Tensor
input_positions: torch.Tensor
query_start_loc: torch.Tensor
block_table: torch.Tensor
max_query_len: int
max_seq_lens: int
chunked_context: Optional[ChunkedContextMetadata] = None
sin: torch.Tensor = None
cos: torch.Tensor = None
@dataclass
class AscendMLADecodeMetadata:
# Input positions for rotrary embeddings since for MLA the rotary
# position embeddings are applied inside the attention backend
input_positions: torch.Tensor
block_table: torch.Tensor
seq_lens: torch.Tensor
max_seq_lens: int
seq_lens_list: list[int]
actual_seq_lengths_q: Optional[list[int]] = None
attn_mask: Optional[torch.Tensor] = None
sin: torch.Tensor = None
cos: torch.Tensor = None
@dataclass
class AscendMLAMetadata:
"""Metadata for MLACommon.
NOTE: Please read the comment at the top of the file before trying to
understand this class
"""
# NOTE(sang): Definition of context_len, query_len, and seq_len.
# |---------- N-1 iteration --------|
# |---------------- N iteration ---------------------|
# |- tokenA -|......................|-- newTokens ---|
# |---------- context_len ----------|
# |-------------------- seq_len ---------------------|
# |-- query_len ---|
num_actual_tokens: int # Number of tokens excluding padding.
slot_mapping: torch.Tensor
query_start_loc: torch.Tensor
seq_lens: torch.Tensor
block_tables: torch.Tensor
# New for MLA (compared to FlashAttention)
# For handling prefill decode split
num_decodes: int
num_decode_tokens: int
num_prefills: int
# For logging.
num_input_tokens: int = 0 # Number of tokens including padding.
query_lens: Optional[list[int]] = None
# The dimension of the attention heads
head_dim: Optional[int] = None
attn_mask: torch.Tensor = None
# chunked prefill by default if no attn_states passed
attn_state: AscendAttentionState = AscendAttentionState.ChunkedPrefill
decode: Optional[AscendMLADecodeMetadata] = None
prefill: Optional[AscendMLAPrefillMetadata] = None
enable_dbo_across_dp: bool = False
def __post_init__(self):
pass
# supported_head_sizes = AscendMLABackend.get_supported_head_sizes()
# if self.head_dim is not None and self.head_dim \
# not in supported_head_sizes:
# raise ValueError(
# f"Only {supported_head_sizes} are supported for head_dim,",
# f"received {self.head_dim}.")
def split_metadata_for_multistream(
self,
ms_split_config: MSAttentionMetadataSplitConfig,
) -> list["AscendMLAMetadata"]:
"""Split metadata for multi-stream with AscendMLAMetadata"""
return model_input_split_v1_mla_attn(
ms_split_config=ms_split_config,
attn_metadata=self,
_metadata_cls=AscendMLAMetadata,
)
M = TypeVar("M", bound=AscendMLAMetadata)
class AscendMLAMetadataBuilder:
# Does this backend/builder support ACL Graphs for attention (default: no).
aclgraph_support: ClassVar[AttentionCGSupport] = \
AttentionCGSupport.UNIFORM_SINGLE_TOKEN_DECODE
"""
NOTE: Please read the comment at the top of the file before trying to
understand this class
"""
# _attn_mask_builder = None
def __init__(self,
kv_cache_spec,
layer_names,
vllm_config: VllmConfig,
device: torch.device,
metadata_cls: Optional[AscendMLAMetadata] = None):
self.metadata_cls: Optional[AscendMLAMetadata] = metadata_cls \
if metadata_cls is not None else AscendMLAMetadata # type: ignore
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.device = device
scheduler_config = vllm_config.scheduler_config
self.block_size = vllm_config.cache_config.block_size
self.max_blocks = (vllm_config.model_config.max_model_len +
self.block_size - 1) // self.block_size
self.chunked_prefill_enabled = scheduler_config.chunked_prefill_enabled
self.speculative_config = vllm_config.speculative_config
self.decode_threshold = 1
if self.speculative_config:
spec_token_num = self.speculative_config.num_speculative_tokens
self.decode_threshold += spec_token_num
assert self.decode_threshold <= 16, f"decode_threshold exceeded \
npu_fused_infer_attention_score TND layout's limit of 16, \
got {self.decode_threshold}"
self.reorder_batch_threshold = self.decode_threshold
if self.chunked_prefill_enabled:
self.chunked_prefill_workspace_size = min(
# Max sure there is enough for 8 full length request or at least
# 4 pages of cache per request
max(8 * self.model_config.max_model_len,
4 * scheduler_config.max_num_seqs * self.block_size),
# For long-context models try not to over-allocate limiting
# kv-cache space, limiting it to 64k tokens,
# which would result in the workspace being:
# 2*(576)*(64*1024) = 144mb
# (assuming 576 MLA head dim, and fp16)
# which would result in up-projected context being
# 2*(192*128)*(64*1024) = 3gb
# (assuming 192 QK head dim, 128 heads, and fp16)
128 * 1024)
assert self.chunked_prefill_workspace_size >= \
scheduler_config.max_num_seqs * self.block_size
self.chunked_prefill_workspace = torch.empty(
(self.chunked_prefill_workspace_size,
self.model_config.get_head_size()),
dtype=self.model_config.dtype,
device=device,
)
self.rope_dim = self.model_config.hf_text_config.qk_rope_head_dim
self.cos_cache = None
self.sin_cache = None
def reorder_batch(self, input_batch: "InputBatch",
scheduler_output: "SchedulerOutput") -> bool:
# We now want to reorder the batch so that the "decode" requests are at
# the front and the "prefill" requests are at the using the least amount
# swaps possible. (NOTE for now we loosely use "decode" to mean requests
# where attention is likely memory-bound and "prefill" to mean requests
# where attention is likely compute-bound, TODO(lucas): figure out a
# better naming here)
decodes = []
prefills = []
for i, req_id in enumerate(input_batch.req_ids):
num_tokens = scheduler_output.num_scheduled_tokens[req_id]
if num_tokens <= self.decode_threshold:
decodes.append(i)
else:
prefills.append(i)
# We hope that this is fairly minimal since decodes
# should be around for a number of iterations so hopefully they are
# relatively stationary (and new request are generally appended to the
# persistent batch so already should be at the back)
# To achieve this we loop over the decodes in descending order and
# the prefills in ascending order. We swap decodes from the "back"
# i.e. past where the last decode should be in the reodorered with
# prefills from the front of the batch.
# `decodes` and `prefills` are already in ascending order just based on
# the above loop
num_decodes = len(decodes)
num_prefills = len(prefills)
first_prefill = 0
modified_batch = False
for i in range(1, min(num_decodes, num_prefills) + 1):
# If the decode is at the "back" of the batch, i, we can swap it
# with the prefill closest to the front of the batch
if decodes[num_decodes - i] >= num_decodes:
input_batch.swap_states(prefills[first_prefill],
decodes[num_decodes - i])
first_prefill += 1
modified_batch = True
else:
break
# Save for next `build` call
# TODO(lucas): this is a bit of a hack, we should probably have a
# better way of doing this
return modified_batch
def build(
self,
common_prefix_len: int,
common_attn_metadata: AscendCommonAttentionMetadata,
model: nn.Module,
) -> AscendMLAMetadata:
num_reqs = common_attn_metadata.num_reqs
num_actual_tokens = common_attn_metadata.num_actual_tokens
query_start_loc = common_attn_metadata.query_start_loc
query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu
num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens = \
split_decodes_and_prefills(common_attn_metadata, decode_threshold=self.decode_threshold)
assert num_decodes + num_prefills == num_reqs
assert num_decode_tokens + num_prefill_tokens == num_actual_tokens
# Note(simon): be careful about the CPU <> GPU memory movement in this
# function. We should avoid GPU -> CPU sync as much as possible because
# it blocks on all previous kernels.
device = self.device
block_table = (common_attn_metadata.block_table_tensor[:num_reqs])
slot_mapping = common_attn_metadata.slot_mapping[:num_actual_tokens]
input_positions = common_attn_metadata.positions[:
num_actual_tokens].long(
)
if self.cos_cache is None:
self.cos_cache = model.model.layers[
0].self_attn.rotary_emb.cos_cached
self.sin_cache = model.model.layers[
0].self_attn.rotary_emb.sin_cached
if self.cos_cache.dtype != self.model_config.dtype: # type: ignore
self.cos_cache = self.cos_cache.to( # type: ignore
self.model_config.dtype) # type: ignore
self.sin_cache = self.sin_cache.to( # type: ignore
self.model_config.dtype) # type: ignore
query_seq_lens_cpu = query_start_loc_cpu[1:] - query_start_loc_cpu[:-1]
query_lens = query_seq_lens_cpu[:num_reqs]
seq_lens = common_attn_metadata.seq_lens_cpu[:num_reqs]
num_computed_tokens_cpu = (seq_lens - query_lens)
prefill_metadata = None
chunked_context_metadata = None
if num_prefills > 0:
reqs_start = num_decodes # prefill_start
tokens_start = num_decode_tokens
max_query_len = query_lens[reqs_start:].max().item()
max_seq_lens = seq_lens[reqs_start:].max().item()
prefill_query_start_loc = query_start_loc[
reqs_start:] - query_start_loc[reqs_start]
context_lens_cpu = num_computed_tokens_cpu[reqs_start:num_reqs]
max_context_len_cpu = context_lens_cpu.max().item()
num_prefills_with_context_cpu = (context_lens_cpu > 0).sum().item()
if self.chunked_prefill_enabled and max_context_len_cpu > 0:
max_context_chunk = (self.chunked_prefill_workspace_size //
num_prefills_with_context_cpu)
max_context_chunk = round_down(max_context_chunk,
self.block_size)
assert max_context_chunk > 0
num_chunks = cdiv(max_context_len_cpu, max_context_chunk)
chunk_starts = torch.arange(num_chunks, dtype=torch.int32) \
.unsqueeze(1).expand(-1, num_prefills) * max_context_chunk
chunk_ends = torch.min(context_lens_cpu.unsqueeze(0),
chunk_starts + max_context_chunk)
chunk_seq_lens = (chunk_ends - chunk_starts).clamp(min=0)
cu_seq_lens_cpu = torch.zeros(num_chunks,
num_prefills + 1,
dtype=torch.int32,
pin_memory=True)
torch.cumsum(chunk_seq_lens,
dim=1,
out=cu_seq_lens_cpu[:, 1:],
dtype=torch.int32)
chunked_context_metadata = \
AscendMLAPrefillMetadata.ChunkedContextMetadata(
cu_seq_lens=cu_seq_lens_cpu.to(device, non_blocking=True),
starts=chunk_starts.to(device, non_blocking=True),
seq_tot=chunk_seq_lens.sum(dim=1).tolist(),
max_seq_lens=chunk_seq_lens.max(dim=1).values.tolist(),
chunk_seq_lens=chunk_seq_lens,
workspace=self.chunked_prefill_workspace,
)
prefill_input_positions = input_positions[tokens_start:]
cos = self.cos_cache[
prefill_input_positions].unsqueeze( # type: ignore
1).unsqueeze(2)
sin = self.sin_cache[
prefill_input_positions].unsqueeze( # type: ignore
1).unsqueeze(2)
prefill_metadata = AscendMLAPrefillMetadata(
attn_mask=common_attn_metadata.attn_mask,
query_lens=query_lens[reqs_start:],
seq_lens=seq_lens,
context_lens=seq_lens[reqs_start:],
input_positions=prefill_input_positions,
block_table=block_table[reqs_start:, ...],
max_query_len=max_query_len,
max_seq_lens=max_seq_lens,
query_start_loc=prefill_query_start_loc,
chunked_context=chunked_context_metadata,
sin=sin,
cos=cos,
)
decode_metadata = None
if num_decodes > 0:
cos = common_attn_metadata.cos
sin = common_attn_metadata.sin
# Notice that num_decodes != num_decode_tokens in SpecDecoding Scenario
actual_seq_lengths_q = query_start_loc[1:num_decodes + 1].tolist()
max_seq_lens = seq_lens[:num_decodes].max().item()
seq_lens = seq_lens[:num_decodes]
input_positions = input_positions[:num_decode_tokens]
block_table = block_table[:num_decodes, ...]
seq_lens_list = seq_lens.tolist()
# TODO: After the fullgraph supports MTP, the if branch needs to deleted
assert self.cos_cache is not None
assert self.sin_cache is not None
if cos is None and sin is None:
cos = self.cos_cache[
input_positions].unsqueeze( # type: ignore
1).unsqueeze(2)
sin = self.sin_cache[
input_positions].unsqueeze( # type: ignore
1).unsqueeze(2)
decode_metadata = AscendMLADecodeMetadata(
input_positions=input_positions,
block_table=block_table,
seq_lens=seq_lens,
seq_lens_list=seq_lens_list,
max_seq_lens=max_seq_lens,
attn_mask=common_attn_metadata.spec_attn_mask,
actual_seq_lengths_q=actual_seq_lengths_q,
sin=sin,
cos=cos)
else:
cos[:num_decodes,
...] = self.cos_cache[input_positions].unsqueeze(
1).unsqueeze(2)
sin[:num_decodes,
...] = self.sin_cache[input_positions].unsqueeze(
1).unsqueeze(2)
decode_metadata = AscendMLADecodeMetadata(
input_positions=input_positions,
block_table=block_table,
seq_lens=seq_lens,
seq_lens_list=seq_lens_list,
max_seq_lens=max_seq_lens,
attn_mask=common_attn_metadata.spec_attn_mask,
actual_seq_lengths_q=actual_seq_lengths_q,
sin=sin[:num_decodes, ...],
cos=cos[:num_decodes, ...])
return self.metadata_cls( # type: ignore
num_actual_tokens=num_actual_tokens,
query_lens=query_lens.tolist(),
slot_mapping=slot_mapping,
head_dim=self.model_config.get_head_size(),
num_decodes=num_decodes,
num_decode_tokens=num_decode_tokens,
num_prefills=num_prefills,
attn_mask=common_attn_metadata.attn_mask,
attn_state=common_attn_metadata.attn_state,
prefill=prefill_metadata,
decode=decode_metadata,
query_start_loc=query_start_loc,
block_tables=block_table,
seq_lens=seq_lens,
enable_dbo_across_dp=common_attn_metadata.enable_dbo_across_dp,
)
def build_for_graph_capture(
self,
common_attn_metadata: AscendCommonAttentionMetadata,
attn_state: AscendAttentionState = AscendAttentionState.DecodeOnly,
model: Optional[nn.Module] = None,
):
if attn_state == AscendAttentionState.DecodeOnly:
attn_metadata = self.build(
common_prefix_len=0,
common_attn_metadata=common_attn_metadata,
model=model,
)
else:
raise NotImplementedError(
"Currently we only support building dummy metadata for DecodeOnly state"
)
attn_metadata.attn_state = attn_state
return attn_metadata
class DecodeMLAPreprocessResult(NamedTuple):
ql_nope: Optional[torch.Tensor] = None
q_pe: Optional[torch.Tensor] = None
k_nope: Optional[torch.Tensor] = None
k_pe: Optional[torch.Tensor] = None
class PrefillMLAPreprocessResult(NamedTuple):
q_nope: Optional[torch.Tensor] = None
q_pe: Optional[torch.Tensor] = None
k_nope: Optional[torch.Tensor] = None
k_pe: Optional[torch.Tensor] = None
value: Optional[torch.Tensor] = None
class AscendMLAImpl(MLAAttentionImpl):
"""
NOTE: Please read the comment at the top of the file before trying to
understand this class
"""
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],
**kwargs,
) -> None:
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_kv_heads
self.kv_cache_dtype = kv_cache_dtype
# MLA Args
self.q_lora_rank = kwargs['q_lora_rank']
self.kv_lora_rank = kwargs['kv_lora_rank']
self.qk_nope_head_dim = kwargs['qk_nope_head_dim']
self.qk_rope_head_dim = kwargs['qk_rope_head_dim']
self.qk_head_dim = kwargs['qk_head_dim']
self.v_head_dim = kwargs['v_head_dim']
self.rotary_emb = kwargs['rotary_emb']
self.q_proj = kwargs['q_proj']
self.kv_b_proj = kwargs['kv_b_proj']
self.o_proj = kwargs['o_proj']
self.kv_a_proj_with_mqa = kwargs.get('kv_a_proj_with_mqa', None)
self.kv_a_layernorm = kwargs.get('kv_a_layernorm', None)
self.q_a_proj = kwargs.get('q_a_proj', None)
self.q_a_layernorm = kwargs.get('q_a_layernorm', None)
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
self.tp_size = get_tensor_model_parallel_world_size()
ascend_config = get_ascend_config()
self.enable_shared_expert_dp = ascend_config.enable_shared_expert_dp
self.enable_prefetch = ascend_config.weight_prefetch_config.enabled
self.enable_kv_nz = ascend_config.torchair_graph_config.enable_kv_nz
vllm_config = get_current_vllm_config()
self.ring_mla_mask_size = 512
self.prefill_mask = None
self.speculative_config = vllm_config.speculative_config
def _v_up_proj(self, x):
# Convert from (B, N, L) to (N, B, L)
x = x.view(-1, self.num_heads, self.kv_lora_rank).transpose(0, 1)
# Multiply (N, B, L) x (N, L, V) -> (N, B, V)
x = torch.bmm(x, self.W_UV)
# Convert from (N, B, V) to (B, N * V)
x = x.transpose(0, 1).reshape(-1, self.num_heads * self.v_head_dim)
return x
# Return `ql_nope`, `q_pe`
def _q_proj_and_k_up_proj(self, x):
q_nope, q_pe = self.q_proj(x)[0]\
.view(-1, self.num_heads, self.qk_head_dim)\
.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
# Convert from (B, N, P) to (N, B, P)
q_nope = q_nope.transpose(0, 1)
# Multiply (N, B, P) x (N, P, L) -> (N, B, L)
ql_nope = torch.bmm(q_nope, self.W_UK_T)
# Convert from (N, B, L) to (B, N, L)
return ql_nope.transpose(0, 1), q_pe
def process_weights_after_loading(self, act_dtype: torch.dtype):
def get_layer_weight(layer):
WEIGHT_NAMES = ("weight", "qweight", "weight_packed")
for attr in WEIGHT_NAMES:
if hasattr(layer, attr):
return getattr(layer, attr)
raise AttributeError(
f"Layer '{layer}' has no recognized weight attribute:"
f" {WEIGHT_NAMES}.")
def get_and_maybe_dequant_weights(layer: LinearBase):
if not isinstance(layer.quant_method, UnquantizedLinearMethod):
# NOTE: This should only be used offline, since it's O(N^3)
eye = torch.eye(layer.input_size_per_partition,
dtype=act_dtype,
device=get_layer_weight(layer).device)
dequant_weights = layer.quant_method.apply(layer,
eye,
bias=None)
del eye
# standardize to (output, input)
return dequant_weights.T
# Weight will be reshaped next. To be on the safe side, the format
# of the weight should be reverted to FRACTAL_AND.
layer.weight.data = torch_npu.npu_format_cast(
layer.weight.data, ACL_FORMAT_FRACTAL_ND)
return layer.weight
# we currently do not have quantized bmm's which are needed for
# `W_UV` and `W_UK_T`, we we just store fp16/bf16 copies and perform
# the bmm's in 16-bit, the extra memory overhead of this is fairly low
kv_b_proj_weight = get_and_maybe_dequant_weights(self.kv_b_proj).T
assert kv_b_proj_weight.shape == (
self.kv_lora_rank,
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim)), (
f"{kv_b_proj_weight.shape=}, "
f"{self.kv_lora_rank=}, "
f"{self.num_heads=}, "
f"{self.qk_nope_head_dim=}, "
f"{self.v_head_dim=}")
kv_b_proj_weight = kv_b_proj_weight.view(
self.kv_lora_rank,
self.num_heads,
self.qk_nope_head_dim + self.v_head_dim,
)
W_UK, W_UV = kv_b_proj_weight.split(
[self.qk_nope_head_dim, self.v_head_dim], dim=-1)
# Convert from (L, N, V) to (N, L, V)
self.W_UV = W_UV.transpose(0, 1).contiguous()
# Convert from (L, N, P) to (N, P, L)
self.W_UK_T = W_UK.permute(1, 2, 0).contiguous()
# Function `get_and_maybe_dequant_weights` will cast the weights to
# FRACTAL_AND. So we need to cast to FRACTAL_NZ again.
if is_enable_nz():
self.kv_b_proj.weight.data = torch_npu.npu_format_cast(
self.kv_b_proj.weight.data, ACL_FORMAT_FRACTAL_NZ)
# Waiting for BMM NZ support
# self.W_UV.data = torch_npu.npu_format_cast(self.W_UV.data, 29)
# self.W_UK_T.data = torch_npu.npu_format_cast(self.W_UK_T.data, 29)
def _compute_prefill_context(
self,
q_nope: torch.Tensor,
q_pe: torch.Tensor,
kv_c_and_k_pe_cache: Tuple[torch.Tensor],
rope_dim: int,
attn_metadata: AscendMLAMetadata,
prefix_output: torch.Tensor,
prefix_lse: torch.Tensor,
):
assert len(kv_c_and_k_pe_cache) > 1
prefill_metadata = attn_metadata.prefill
if prefill_metadata is None or prefill_metadata.chunked_context is None:
return prefix_output, prefix_lse
iters = len(prefill_metadata.chunked_context.seq_tot)
seq_len1 = torch.tensor(prefill_metadata.query_lens, dtype=torch.int32)
cache_kv_c = kv_c_and_k_pe_cache[0]
cache_k_pe = kv_c_and_k_pe_cache[1]
num_heads = cache_k_pe.size(2)
latent_kv_dim = kv_c_and_k_pe_cache[0].size(-1)
for i in range(iters):
toks = prefill_metadata.chunked_context.seq_tot[i]
seq_len2 = prefill_metadata.chunked_context.chunk_seq_lens[i]
seq_len = torch.stack([seq_len1, seq_len2])
kv_c_normed = torch.empty(toks,
num_heads,
latent_kv_dim,
dtype=q_nope.dtype,
device=q_nope.device)
k_pe = torch.empty(toks,
num_heads,
rope_dim,
dtype=q_nope.dtype,
device=q_nope.device)
torch_npu.atb.npu_paged_cache_load(
cache_kv_c,
cache_k_pe,
prefill_metadata.block_table,
seq_len2.to(q_nope.device),
seq_starts=prefill_metadata.chunked_context.starts[i],
key=kv_c_normed,
value=k_pe,
)
kv_c_normed = kv_c_normed.squeeze()
kv_nope = self.kv_b_proj(kv_c_normed)[0].view( \
-1, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
k_nope, v = kv_nope\
.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k_pe = k_pe.expand((*k_nope.shape[:-1], -1))
torch_npu.atb.npu_ring_mla(
q_nope=q_nope,
q_rope=q_pe,
k_nope=k_nope,
k_rope=k_pe,
value=v,
mask=self.prefill_mask,
seqlen=seq_len,
head_num=self.num_heads,
kv_head_num=self.num_heads,
pre_out=prefix_output,
prev_lse=prefix_lse,
qk_scale=self.scale,
kernel_type="kernel_type_high_precision",
mask_type="no_mask",
input_layout="type_bsnd",
calc_type="calc_type_default",
output=prefix_output,
softmax_lse=prefix_lse)
return prefix_output, prefix_lse
def _forward_prefill(
self,
q_nope: torch.Tensor,
q_pe: torch.Tensor,
k_nope: torch.Tensor,
k_pe: torch.Tensor,
value: torch.Tensor,
kv_c_and_k_pe_cache: Tuple[torch.Tensor],
attn_metadata: AscendMLAMetadata,
) -> torch.Tensor:
assert attn_metadata.prefill is not None
assert len(kv_c_and_k_pe_cache) > 1
num_tokens = q_nope.size(0)
attn_output = torch.empty(num_tokens,
self.num_heads,
self.v_head_dim,
dtype=q_nope.dtype,
device=q_nope.device)
attn_lse = torch.empty(self.num_heads,
num_tokens,
dtype=torch.float32,
device=q_nope.device)
if self.prefill_mask is None:
if q_nope.dtype == torch.float16:
mask_value = torch.finfo(torch.float32).min
else:
mask_value = 1
prefill_mask = torch.triu(
torch.ones(self.ring_mla_mask_size,
self.ring_mla_mask_size,
device=q_nope.device,
dtype=q_nope.dtype), 1)
self.prefill_mask = torch.where(prefill_mask == 1, mask_value,
0).to(q_nope.dtype)
torch_npu.atb.npu_ring_mla(q_nope=q_nope,
q_rope=q_pe,
k_nope=k_nope,
k_rope=k_pe,
value=value,
mask=self.prefill_mask,
seqlen=torch.tensor(
attn_metadata.prefill.query_lens,
dtype=torch.int32),
head_num=self.num_heads,
kv_head_num=self.num_heads,
pre_out=None,
prev_lse=None,
qk_scale=self.scale,
kernel_type="kernel_type_high_precision",
mask_type="mask_type_triu",
input_layout="type_bsnd",
calc_type="calc_type_first_ring",
output=attn_output,
softmax_lse=attn_lse)
attn_output, attn_lse = self._compute_prefill_context( \
q_nope, q_pe, kv_c_and_k_pe_cache, self.qk_rope_head_dim, attn_metadata, attn_output, attn_lse)
attn_output = attn_output.reshape(
[num_tokens, self.num_heads * self.v_head_dim])
return attn_output
def exec_kv_decode(
self,
kv_no_split: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
kv_cache: Tuple,
slots: torch.Tensor,
):
B = kv_no_split.shape[0]
N = self.num_kv_heads
S = 1
# npu_kv_rmsnorm_rope_cache needs [B, N, S, D]
kv_no_split = kv_no_split.view(
B, N, S, self.kv_lora_rank + self.qk_rope_head_dim)
cache_mode = "PA_NZ" if self.enable_kv_nz else "PA"
k_pe, k_nope, _, _ = torch_npu.npu_kv_rmsnorm_rope_cache(
kv_no_split,
self.kv_a_layernorm.weight,
cos,
sin,
slots.to(torch.int64),
kv_cache[1],
kv_cache[0],
epsilon=self.kv_a_layernorm.variance_epsilon,
cache_mode=cache_mode,
)
return k_pe, k_nope
def exec_kv_prefill(
self,
kv_no_split: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
kv_cache: Tuple,
slots: torch.Tensor,
):
B = kv_no_split.shape[0]
N = self.num_kv_heads
S = 1
# npu_kv_rmsnorm_rope_cache needs [B, N, S, D]
kv_no_split = kv_no_split.view(
B, N, S, self.kv_lora_rank + self.qk_rope_head_dim)
cache_mode = "PA_NZ" if self.enable_kv_nz else "PA"
_, _, k_pe, k_nope = torch_npu.npu_kv_rmsnorm_rope_cache(
kv_no_split,
self.kv_a_layernorm.weight,
cos,
sin,
slots.to(torch.int64),
kv_cache[1],
kv_cache[0],
epsilon=self.kv_a_layernorm.variance_epsilon,
cache_mode=cache_mode,
is_output_kv=True,
)
return k_pe, k_nope
def rope_single(
self,
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
) -> torch.Tensor:
B, N, D = x.shape
S = 1
x = x.view(B, N, S, D)
x = torch_npu.npu_interleave_rope(x, cos, sin)
return x.view(B, N, D)
def _forward_decode(
self,
q_nope: torch.Tensor,
q_pe: torch.Tensor,
k_nope: torch.Tensor,
k_pe: torch.Tensor,
block_size: int,
attn_metadata: AscendMLAMetadata,
) -> torch.Tensor:
decode_meta = attn_metadata.decode
assert decode_meta is not None
num_tokens = q_nope.size(0)
# shape of knope/k_pe for npu graph mode should be:
# [num_blocks, num_kv_heads, block_size, self.kv_lora_rank/self.qk_rope_head_dim]
actual_seq_lengths = None
if self.enable_kv_nz:
k_nope = k_nope.view(-1, self.num_kv_heads,
self.kv_lora_rank // 16, block_size, 16)
k_pe = k_pe.view(-1, self.num_kv_heads,
self.qk_rope_head_dim // 16, block_size, 16)
input_layout = "BSND"
else:
k_nope = k_nope.view(-1, self.num_kv_heads, block_size,
self.kv_lora_rank)
k_pe = k_pe.view(-1, self.num_kv_heads, block_size,
self.qk_rope_head_dim)
input_layout = "BNSD"
if attn_metadata.attn_state in [
AscendAttentionState.SpecDecoding,
AscendAttentionState.ChunkedPrefill
] and self.speculative_config is not None:
# Use TND layout for pure SpecDecoding and SpecDecoding in ChunkedPrefill
input_layout = "TND"
# [bs * q_seq_len, num_heads_per_rank, dim]
q_nope = q_nope.view(num_tokens, self.num_heads, -1)
q_pe = q_pe.view(num_tokens, self.num_heads, -1)
sparse_mode = 3
spec_attn_mask = attn_metadata.decode.attn_mask # type:ignore
actual_seq_lengths = decode_meta.actual_seq_lengths_q
else:
if self.enable_kv_nz:
q_nope = q_nope.view(num_tokens, 1, self.num_heads, -1)
q_pe = q_pe.view(num_tokens, 1, self.num_heads, -1)
else:
q_nope = q_nope.view(num_tokens, self.num_heads, 1, -1)
q_pe = q_pe.view(num_tokens, self.num_heads, 1, -1)
sparse_mode = 0
spec_attn_mask = None
common_kwargs = {
'query_rope': q_pe,
'key_rope': k_pe,
'num_heads': self.num_heads,
'num_key_value_heads': self.num_kv_heads,
'input_layout': input_layout,
'atten_mask': spec_attn_mask,
'sparse_mode': sparse_mode,
'scale': self.scale,
'antiquant_mode': 0,
'antiquant_scale': None,
'block_table': decode_meta.block_table,
'block_size': block_size,
"actual_seq_lengths": actual_seq_lengths,
"actual_seq_lengths_kv": decode_meta.seq_lens_list,
}
graph_params = get_graph_params()
forward_context: ForwardContext = get_forward_context()
if forward_context.capturing:
stream = torch_npu.npu.current_stream()
event = torch.npu.ExternalEvent()
event.wait(stream)
event.reset(stream)
graph_params.events[num_tokens].append(event)
workspace = graph_params.workspaces.get(num_tokens)
if workspace is None:
workspace = torch_npu._npu_fused_infer_attention_score_get_max_workspace(
q_nope, k_nope, k_nope, **common_kwargs)
graph_params.workspaces[num_tokens] = workspace
attn_output = torch.empty_like(q_nope)
softmax_lse = torch.empty(num_tokens,
dtype=q_nope.dtype,
device=q_nope.device)
graph_params.attn_params[num_tokens].append(
(q_nope, k_nope, q_pe, k_pe, self.num_heads, self.num_kv_heads,
input_layout, spec_attn_mask, sparse_mode, self.scale,
decode_meta.block_table, block_size,
decode_meta.seq_lens_list, actual_seq_lengths, workspace,
attn_output, softmax_lse))
torch.npu.graph_task_group_begin(stream)
torch_npu.npu_fused_infer_attention_score.out(
q_nope,
k_nope,
k_nope,
**common_kwargs,
workspace=workspace,
out=[attn_output, softmax_lse])
handle = torch.npu.graph_task_group_end(stream)
graph_params.handles[num_tokens].append(handle)
else:
attn_output, _ = torch_npu.npu_fused_infer_attention_score(
q_nope, k_nope, k_nope, **common_kwargs)
current_ms_metadata = get_multistream_comm_context()
if current_ms_metadata is None:
return self._v_up_proj(attn_output)
else:
current_ms_metadata.before_comm_event.record()
with torch.npu.stream(current_ms_metadata.comm_stream):
current_ms_metadata.before_comm_event.wait()
return self._v_up_proj(attn_output)
def _mla_preprocess(self, layer_name, hidden_states, kv_cache,
attn_metadata, need_gather_q_kv):
# MLA Preprocess:
# 1. Perform q_a_proj and q_a_layernorm to obtain q_c
# 2. Perform kv_a_proj_with_mqa to obtain kv_no_split
# 3. If need_gather_q_kv, perform all_gather.
# 4. Preprocess decode tokens, write kv cache and get:
# decode_ql_nope, decode_q_pe, decode_k_pe, decode_k_nope
# 5. Preprocess prefill tokens, write kv cache and get:
# prefill_q_nope, prefill_q_pe, prefill_k_nope, prefill_k_pe, prefill_value
has_decode = attn_metadata.num_decodes > 0
has_prefill = attn_metadata.num_prefills > 0
num_decode_tokens = attn_metadata.num_decode_tokens
num_actual_tokens = attn_metadata.num_actual_tokens
if self.q_a_proj is not None:
maybe_npu_prefetch(inputs=self.q_a_proj.weight,
dependency=hidden_states,
enabled=self.enable_prefetch)
ckq = self.q_a_proj(hidden_states)[0]
q_c = self.q_a_layernorm(ckq)
else:
q_c = hidden_states
kv_no_split = self.kv_a_proj_with_mqa(hidden_states)[0]
# Process for shared_expert_dp
if need_gather_q_kv:
q_c = get_tp_group().all_gather(q_c, 0)
kv_no_split = get_tp_group().all_gather(kv_no_split, 0)
decode_preprocess_res = None
prefill_preprocess_res = None
if has_prefill:
wait_for_kv_layer_from_connector(layer_name)
# Preprocess for decode tokens
if has_decode:
decode_q_c = q_c[:num_decode_tokens]
cos = attn_metadata.decode.cos
sin = attn_metadata.decode.sin
decode_ql_nope, decode_q_pe = \
self._q_proj_and_k_up_proj(decode_q_c)
decode_q_pe = self.rope_single(decode_q_pe, cos, sin)
decode_slots = attn_metadata.slot_mapping[:num_decode_tokens]
decode_kv_no_split = kv_no_split[:num_decode_tokens]
decode_k_pe, decode_k_nope = self.exec_kv_decode(
decode_kv_no_split, cos, sin, kv_cache, decode_slots)
decode_preprocess_res = DecodeMLAPreprocessResult(
decode_ql_nope, decode_q_pe, decode_k_nope, decode_k_pe)
# Preprocess for prefill tokens
if has_prefill:
prefill_kv_no_split = kv_no_split[
num_decode_tokens:num_actual_tokens]
prefill_q_c = q_c[num_decode_tokens:num_actual_tokens]
prefill_q = self.q_proj(prefill_q_c)[0]\
.view(-1, self.num_heads, self.qk_head_dim)
prefill_q_pe = prefill_q[..., self.qk_nope_head_dim:]
prefill_q_nope = prefill_q[..., :self.qk_nope_head_dim]
cos = attn_metadata.prefill.cos
sin = attn_metadata.prefill.sin
prefill_slots = attn_metadata.slot_mapping[
num_decode_tokens:num_actual_tokens]
prefill_q_pe = self.rope_single(prefill_q_pe, cos, sin)
prefill_k_pe, prefill_k_c_normed = self.exec_kv_prefill(
prefill_kv_no_split, cos, sin, kv_cache, prefill_slots)
prefill_k_pe = prefill_k_pe.view(prefill_q_c.shape[0],
self.num_kv_heads, -1)
prefill_k_nope, prefill_value = self.kv_b_proj(
prefill_k_c_normed)[0].view(
-1, self.num_heads,
self.qk_nope_head_dim + self.v_head_dim).split(
[self.qk_nope_head_dim, self.v_head_dim], dim=-1)
prefill_k_pe = prefill_k_pe.expand(
(*prefill_k_nope.shape[:-1], -1))
prefill_preprocess_res = PrefillMLAPreprocessResult(
prefill_q_nope, prefill_q_pe, prefill_k_nope, prefill_k_pe,
prefill_value)
return decode_preprocess_res, prefill_preprocess_res
def forward(
self,
layer_name,
hidden_states: torch.Tensor, # query in unified attn
kv_cache: Tuple[torch.Tensor],
attn_metadata: M,
need_gather_q_kv: bool = False,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
assert output is not None, "Output tensor must be provided."
if attn_metadata is None:
# Profiling run.
return output
num_actual_tokens = attn_metadata.num_actual_tokens
assert attn_metadata.num_decodes is not None and \
attn_metadata.num_prefills is not None and \
attn_metadata.num_decode_tokens is not None
num_decode_tokens = attn_metadata.num_decode_tokens
# Inputs and outputs may be padded for CUDA graphs
output_padded = output
output = output[:num_actual_tokens, ...]
o_proj_input_shape = (num_actual_tokens,
self.num_heads * self.v_head_dim)
o_proj_input = torch.empty(o_proj_input_shape,
dtype=hidden_states.dtype,
device=hidden_states.device)
# MLA Preprocess
decode_preprocess_res, prefill_preprocess_res = self._mla_preprocess(
layer_name, hidden_states, kv_cache, attn_metadata,
need_gather_q_kv)
if decode_preprocess_res is not None:
# MLA Preprocess for decoding
output_decode = self._forward_decode(decode_preprocess_res.ql_nope,
decode_preprocess_res.q_pe,
decode_preprocess_res.k_nope,
decode_preprocess_res.k_pe,
kv_cache[0].shape[1],
attn_metadata)
current_ms_metadata = get_multistream_comm_context()
if current_ms_metadata is not None:
with torch.npu.stream(current_ms_metadata.comm_stream):
o_proj_input[:num_decode_tokens] = output_decode
current_ms_metadata.after_comm_event.record()
else:
o_proj_input[:num_decode_tokens] = output_decode
if prefill_preprocess_res is not None:
# FIX: aicore move should be also placed on the comm stream in dbo,
# otherwise it may affect the accuracy
# TODO: use an elegant way to overlap
output_prefill = self._forward_prefill(
prefill_preprocess_res.q_nope, prefill_preprocess_res.q_pe,
prefill_preprocess_res.k_nope, prefill_preprocess_res.k_pe,
prefill_preprocess_res.value, kv_cache, attn_metadata)
current_ms_metadata = get_multistream_comm_context()
if current_ms_metadata is not None:
with torch.npu.stream(current_ms_metadata.comm_stream):
o_proj_input[num_decode_tokens:] = output_prefill
current_ms_metadata.after_comm_event.record()
else:
o_proj_input[num_decode_tokens:] = output_prefill
# O proj
current_ms_metadata = get_multistream_comm_context()
MAX_O_PROJ_PREFETCH_SIZE = 16 * 1024 * 1024
if current_ms_metadata is None:
maybe_npu_prefetch(inputs=self.o_proj.weight,
dependency=o_proj_input,
max_size=MAX_O_PROJ_PREFETCH_SIZE,
enabled=self.enable_prefetch)
output[...] = self.o_proj(
o_proj_input,
is_prefill=prefill_preprocess_res is not None,
is_force_scatter=self.enable_shared_expert_dp)[0]
else:
with torch.npu.stream(current_ms_metadata.comm_stream):
maybe_npu_prefetch(inputs=self.o_proj.weight,
dependency=o_proj_input,
max_size=MAX_O_PROJ_PREFETCH_SIZE,
enabled=self.enable_prefetch)
output[...] = self.o_proj(
o_proj_input,
is_prefill=prefill_preprocess_res is not None,
is_force_scatter=self.enable_shared_expert_dp)[0]
current_ms_metadata.after_comm_event.record()
del o_proj_input
has_prefill = attn_metadata.num_prefills > 0
if has_prefill:
maybe_save_kv_layer_to_connector(layer_name, list(kv_cache))
return output_padded