Files
vllm-ascend/vllm_ascend/torchair/torchair_model_runner.py
xuyexiong 0777e2f899 Optimize torchair kv_consumer padding logic (#3526)
### What this PR does / why we need it?
Optimize torchair kv_consumer padding logic. Only pad when it is spec
decoding

### Does this PR introduce _any_ user-facing change?

### How was this patch tested?

- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

Signed-off-by: xuyexiong <xuyexiong@huawei.com>
2025-10-18 16:42:17 +08:00

530 lines
26 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
# Adapted from vllm-project/vllm/vllm/worker/gpu_model_runner.py
# isort: skip_file
import math
import types
from typing import Optional
import torch
import torch.distributed as dist
import torch.nn as nn
import torch_npu
from vllm.config import VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import get_dp_group
from vllm.forward_context import get_forward_context
from vllm.logger import logger
import vllm_ascend.envs as envs_ascend
from vllm_ascend.ascend_config import get_ascend_config
from vllm_ascend.platform import NPUPlatform
from vllm_ascend.torchair.utils import (
TORCHAIR_CACHE_DIR, TorchairCommonAttentionMetadata,
check_torchair_cache_exist, converting_weight_acl_format,
register_torchair_model, torchair_ops_patch,
torchair_quant_method_register, write_kv_cache_bytes_to_file)
from vllm_ascend.utils import (ACL_FORMAT_FRACTAL_ND, ACL_FORMAT_FRACTAL_NZ,
is_310p, get_ascend_soc_version,
AscendSocVersion)
from vllm_ascend.worker.model_runner_v1 import NPUModelRunner
class NPUTorchairModelRunner(NPUModelRunner):
def __init__(self, vllm_config: VllmConfig, device: torch.device):
self.ascend_config = get_ascend_config()
self.enable_shared_expert_dp = self.ascend_config.enable_shared_expert_dp
super().__init__(vllm_config, device)
if self.speculative_config:
self.actual_seq_lengths_q = list(
range(self.decode_token_per_req, self.max_num_tokens + 1,
self.decode_token_per_req))
self.attn_metadata_builder = self.attn_backend.get_builder_cls()(
None, None, vllm_config, device)
register_torchair_model()
torchair_ops_patch()
torchair_quant_method_register()
if self.enable_shared_expert_dp:
return
self.new_kv_cache_bytes = -1
self.torchair_compiled_model = None # type: ignore
self.torchair_compiled_models = {} # type: ignore
self.use_cached_npu_graph = self.ascend_config.torchair_graph_config.use_cached_graph
self.use_cached_kv_cache_bytes = self.ascend_config.torchair_graph_config.use_cached_kv_cache_bytes
self.torchair_graph_batch_sizes = self.ascend_config.torchair_graph_config.graph_batch_sizes
if self.ascend_config.torchair_graph_config.graph_batch_sizes_init:
self.init_torchair_graph_batch_sizes()
self.update_torchair_graph_batch_sizes()
torch._dynamo.cache_size.config.cache_size_limit += len(
self.torchair_graph_batch_sizes)
torch._dynamo.config.capture_dynamic_output_shape_ops = True
torch._logging.set_logs(
recompiles=envs_ascend.VLLM_ASCEND_TRACE_RECOMPILES)
self._check_batch_sizes_consistency()
def _may_pad_kv_consumer_num_seq(self):
# pd disaggregation scenario need redundant_batch_sizes to avoid each batch's seq_len exceed 16 tokens
# self.max_num_reqs here is greater than the actual maximum request number
if self.decode_token_per_req > 1 and self.is_kv_consumer:
# applied only when speculative decoding is active
FIA_SEQ_LEN_LIMIT = 16
new_max_num_reqs = self.max_num_reqs + math.ceil(
self.max_num_reqs / FIA_SEQ_LEN_LIMIT) + math.ceil(
(self.max_num_reqs * self.decode_token_per_req) /
(FIA_SEQ_LEN_LIMIT**2))
if self.max_num_reqs < new_max_num_reqs:
logger.warning(
f"max_num_reqs is updated to {new_max_num_reqs}")
self.max_num_reqs = new_max_num_reqs
def _init_mc2_tokens_capacity(self):
# NOTE: To be clear, we need to make sure that during graph capture, the number of
# tokens is less than or equal to mc2_tokens_capacity. According to _set_cudagraph_sizes,
# the max number of tokens in graph is min(max_num_seqs * uniform_decode_query_len, 512).
max_num_tokens = self.max_num_reqs * self.uniform_decode_query_len
tp_size = self.parallel_config.tensor_parallel_size
# Use integer arithmetic for ceiling division.
num_tokens_per_tp_rank = (max_num_tokens + tp_size - 1) // tp_size
# maintain the same calculation logic as the function _align_graph_size_divisible_by_tp_size()
self.mc2_tokens_capacity = num_tokens_per_tp_rank * tp_size
def _sync_metadata_across_dp(
self, num_tokens: int, with_prefill: bool, enable_dbo: bool
) -> tuple[int, Optional[torch.Tensor], bool, bool]:
"""Override from NPUModelRunner to pad num_tokens"""
if self.enable_shared_expert_dp:
# Padding is not required for shared_expert_dp cases in eager mode.
return num_tokens, None, with_prefill, enable_dbo
if self.dp_size == 1:
if not with_prefill:
maybe_padded_num_tokens = self.select_torchair_padded_batch_size(
num_tokens)
return maybe_padded_num_tokens, None, with_prefill, enable_dbo
return num_tokens, None, with_prefill, enable_dbo
num_tokens_across_dp = torch.zeros(self.dp_size + 2,
dtype=torch.int32,
device="npu")
num_tokens_across_dp[self.dp_rank] = num_tokens
num_tokens_across_dp[-2] = int(with_prefill)
num_tokens_across_dp[-1] = int(not enable_dbo)
dist.all_reduce(num_tokens_across_dp,
group=get_dp_group().device_group)
with_prefill = bool(num_tokens_across_dp[-2])
enable_dbo = not bool(num_tokens_across_dp[-1])
num_tokens_across_dp = num_tokens_across_dp[:-2]
if not with_prefill:
max_num_token = num_tokens_across_dp.max().item()
maybe_padded_num_tokens = self.select_torchair_padded_batch_size(
max_num_token)
num_tokens_across_dp = torch.full((self.dp_size, ),
maybe_padded_num_tokens,
dtype=torch.int32,
device="npu")
else:
maybe_padded_num_tokens = num_tokens
return maybe_padded_num_tokens, num_tokens_across_dp, with_prefill, enable_dbo
def _build_attention_metadata(self, with_prefill, num_reqs, num_tokens,
max_query_len, force_attention):
# NOTE: If torchair graph mode and not with_prefill,
# we can't skip_attn, it will cause graph recompile.
if with_prefill or self.enable_shared_expert_dp:
attn_metadata = super()._build_attention_metadata(
with_prefill, num_reqs, num_tokens, max_query_len,
force_attention)
else:
common_attn_metadata = TorchairCommonAttentionMetadata(
num_reqs=num_reqs,
num_actual_tokens=1,
actual_seq_lengths_q=self.actual_seq_lengths_q,
attn_mask=self.attn_mask,
spec_attn_mask=self.spec_attn_mask,
decode_token_per_req=self.decode_token_per_req,
)
attn_metadata = self.attn_metadata_builder.build_torchair_graph_dummy(
common_attn_metadata)
return attn_metadata
def _generate_dummy_run_hidden_states(self, with_prefill,
is_torchair_compile, input_ids,
positions, attn_metadata, num_tokens,
intermediate_tensors, inputs_embeds):
if with_prefill or self.enable_shared_expert_dp:
if is_310p():
converting_weight_acl_format(self.model, ACL_FORMAT_FRACTAL_ND)
hidden_states = super()._generate_dummy_run_hidden_states(
with_prefill, is_torchair_compile, input_ids, positions,
attn_metadata, num_tokens, intermediate_tensors, inputs_embeds)
else:
# Only mark static while compiling
if is_torchair_compile:
torch._dynamo.mark_static(input_ids)
torch._dynamo.mark_static(positions)
torch._dynamo.mark_static(attn_metadata.decode.block_table)
torch._dynamo.mark_static(attn_metadata.decode.input_positions)
torch._dynamo.mark_static(get_forward_context().mc2_mask)
if hasattr(attn_metadata.decode, "sin"):
torch._dynamo.mark_static(attn_metadata.decode.sin)
torch._dynamo.mark_static(attn_metadata.decode.cos)
torch._dynamo.mark_static(attn_metadata.slot_mapping)
if self.speculative_config:
torch._dynamo.mark_static(attn_metadata.decode.attn_mask)
for kv in self.kv_caches:
assert isinstance(kv, tuple), "kv_cache must be a tuple"
torch._dynamo.mark_static(kv[0])
torch._dynamo.mark_static(kv[1])
if is_310p():
converting_weight_acl_format(self.model, ACL_FORMAT_FRACTAL_NZ)
compiled_model = self._get_torchair_lazy_compiled_model(num_tokens)
model_kwargs = {}
model_kwargs["kv_caches"] = self.kv_caches
model_kwargs["attn_metadata"] = attn_metadata
hidden_states = compiled_model(
input_ids=input_ids,
positions=positions,
intermediate_tensors=intermediate_tensors,
inputs_embeds=None,
**model_kwargs,
)
return hidden_states
def _convert_torch_format(self, kv_cache):
if self.enable_shared_expert_dp:
return super()._convert_torch_format(kv_cache)
kv_cache = torch_npu.npu_format_cast(kv_cache, ACL_FORMAT_FRACTAL_ND)
return kv_cache
def _compile_torchair_graph(self, torchair_graph_batch_sizes) -> None:
# Trigger torchair graph capture for specific shapes.
# Capture the large shapes first so that the smaller shapes
# can reuse the memory pool allocated for the large shapes.
for idx, num_tokens in enumerate(reversed(torchair_graph_batch_sizes)):
for _ in range(self.vllm_config.compilation_config.
cudagraph_num_of_warmups):
self._dummy_run(num_tokens, is_torchair_compile=True)
self._dummy_run(num_tokens, is_torchair_compile=True)
logger.info("Batchsize %d is compiled successfully: %d/%d.",
num_tokens, idx + 1, len(torchair_graph_batch_sizes))
def _capture_model(self):
"""Override from NPUModelRunner to use torchair graph capture."""
if self.enable_shared_expert_dp:
return super()._capture_model()
# TODO(NeverRaR): Calling graph_capture(device=self.device) in
# torchair graph capture can cause some issues, so now we just
# temporarily split the codepath for the two different graph patterns.
torchair_graph_batch_sizes = self.torchair_graph_batch_sizes
graph_num = len(torchair_graph_batch_sizes)
if self.use_cached_npu_graph and not check_torchair_cache_exist():
# If caching is enabled but does not exist (either
# use_cached_kv_cache_bytes is disabled or kv_cache_bytes are
# different), we will compile the model twice. The first time is
# used to generate the cache, and the second time is used to load the
# cache to skip the overhead caused by Dynamo guard mechanism.
logger.info(
"Cache compilation for torchair graph is enabled. Now we compile graph to genetate"
" torchair cache, this usually takes %.1f~%.1f mins.",
0.5 * graph_num, 1.5 * graph_num)
self._compile_torchair_graph(torchair_graph_batch_sizes)
NPUPlatform.synchronize()
# Note: We reset dynamo and reload the compiled torchair cached computation graph below
# that was compiled above. This operation reduces graph launch time by 2-4ms and avoids
# runtime errors caused by configuration mismatches in graph mode.
torch._dynamo.reset()
self.torchair_compiled_models.clear()
if self.use_cached_npu_graph:
logger.info(
"Loading torchair graph cache, this usually takes %.1f~%.1f mins.",
0.3 * graph_num, 0.5 * graph_num)
self._compile_torchair_graph(torchair_graph_batch_sizes)
else:
logger.info(
"Capturing torchair graph, this usually takes %.1f~%.1f mins.",
0.5 * graph_num, 1.5 * graph_num)
self._compile_torchair_graph(torchair_graph_batch_sizes)
if self.use_cached_kv_cache_bytes and self.new_kv_cache_bytes > 0:
write_kv_cache_bytes_to_file(torch.distributed.get_rank(),
self.new_kv_cache_bytes)
def _use_aclgraph(self) -> bool:
if self.enable_shared_expert_dp:
return super()._use_aclgraph()
return False
def _check_batch_sizes_consistency(self) -> None:
if not dist.is_initialized():
return
local = torch.tensor(self.torchair_graph_batch_sizes,
device="cpu",
dtype=torch.int32)
gathered_graph_batch_size = local.clone()
dist.all_reduce(gathered_graph_batch_size,
group=get_dp_group().cpu_group)
expected = local * self.dp_size
if not torch.equal(gathered_graph_batch_size, expected):
diff_idxs = (gathered_graph_batch_size != expected).nonzero(
as_tuple=False).flatten().tolist()
raise AssertionError(
f"[Graph BatchSize Mismatch] Found mismatches at indices {diff_idxs}.\n"
f"Local (rank {self.dp_rank}): {local.tolist()}\n"
f"Sum over ranks: {gathered_graph_batch_size.tolist()}\n"
f"Expected if all equal: {[v * self.dp_size for v in local.tolist()]}"
)
def _update_graph_pad_size(self, with_prefill, graph_pad_size):
if with_prefill or self.enable_shared_expert_dp:
super()._update_graph_pad_size(with_prefill, graph_pad_size)
else:
self.graph_pad_size = graph_pad_size
def _update_input_ids_and_positions(self, input_ids, positions,
num_input_tokens, with_prefill,
padded_num_tokens_across_dp):
"""Override from NPUModelRunner to update input_ids and positions"""
input_ids, positions = super()._update_input_ids_and_positions(
input_ids, positions, num_input_tokens, with_prefill,
padded_num_tokens_across_dp)
if with_prefill or self.enable_shared_expert_dp:
return input_ids, positions
else:
input_ids = self.input_ids[:padded_num_tokens_across_dp]
positions = self.positions[:padded_num_tokens_across_dp]
return input_ids, positions
def _generate_process_reqs_hidden_states(self, attn_metadata, with_prefill,
padded_num_tokens_across_dp,
input_ids, positions,
intermediate_tensors,
inputs_embeds):
if attn_metadata is not None and isinstance(attn_metadata, dict):
attn_metadata = attn_metadata['model.layers.0.self_attn.attn']
if self.enable_shared_expert_dp:
return super()._generate_process_reqs_hidden_states(
attn_metadata, with_prefill, padded_num_tokens_across_dp,
input_ids, positions, intermediate_tensors, inputs_embeds)
model_kwargs = {
"kv_caches": self.kv_caches,
"attn_metadata": attn_metadata
}
if not with_prefill:
if is_310p():
converting_weight_acl_format(self.model, ACL_FORMAT_FRACTAL_NZ)
compiled_model = self._get_torchair_lazy_compiled_model(
padded_num_tokens_across_dp)
hidden_states = compiled_model(
input_ids=input_ids,
positions=positions,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
**model_kwargs,
)
else:
assert self.model is not None
if is_310p():
converting_weight_acl_format(self.model, ACL_FORMAT_FRACTAL_ND)
hidden_states = self.model(
input_ids=input_ids,
positions=positions,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
**model_kwargs,
)
return hidden_states
def _get_torchair_lazy_compiled_model(self, batch_size: int):
if batch_size < 0 or batch_size > self.torchair_graph_batch_sizes[-1]:
raise ValueError(
f"Bad graph batch size:{batch_size}! max_graph_batch_sizes:{self.torchair_graph_batch_sizes[-1]}"
)
compiled_model = self.torchair_compiled_models.get(
batch_size
) if self.use_cached_npu_graph else self.torchair_compiled_model
if compiled_model:
return compiled_model
import torchair # type: ignore
from torchair import patch_for_hcom # type: ignore
patch_for_hcom()
if is_310p():
# on 300I Duo platform, we need to patch broadcast. however, this patch will be
# overwritten by patch_for_hcom in torchair. so we need to re-patch it here.
from vllm_ascend.patch.platform.patch_common.patch_distributed import \
communication_adaptation_310p
communication_adaptation_310p()
config = torchair.CompilerConfig()
if self.ascend_config.torchair_graph_config.mode:
config.mode = self.ascend_config.torchair_graph_config.mode
config.experimental_config.frozen_parameter = \
self.ascend_config.torchair_graph_config.enable_frozen_parameter
# enabling tiling_schedule_optimize on 300I Duo has some bugs, so we have to
# disable it on 300I Duo platform now.
config.experimental_config.tiling_schedule_optimize = not is_310p()
config.experimental_config.enable_view_optimize = \
self.ascend_config.torchair_graph_config.enable_view_optimize
torch.npu.set_compile_mode(jit_compile=False)
if not self.use_cached_npu_graph:
npu_backend = torchair.get_npu_backend(compiler_config=config)
self.torchair_compiled_model = torch.compile(
self.model,
dynamic=not self.use_sparse,
fullgraph=True,
backend=npu_backend)
return self.torchair_compiled_model
else:
# Generate a new forward proxy code object to prevent the invalidation of
# compilation cache caused by dynamo retracing
forward_proxy_name = f"{self.model.__class__.__name__}_forward_with_batch_size_{batch_size}"
forward_fn = self.model.forward
code = forward_fn.__code__
# Mark code object with a new proxy name
modified_code = code.replace(co_name=forward_proxy_name, )
modified_func = types.FunctionType(modified_code,
forward_fn.__globals__,
name=forward_proxy_name,
argdefs=forward_fn.__defaults__)
self.model.__dict__[forward_proxy_name] = modified_func.__get__(
self.model, nn.Module)
self.torchair_compiled_models[
batch_size] = torchair.inference.cache_compile(
self.model.__dict__[forward_proxy_name],
dynamic=not self.use_sparse,
fullgraph=True,
cache_dir=TORCHAIR_CACHE_DIR,
config=config,
ge_cache=False)
return self.torchair_compiled_models[batch_size]
def init_torchair_graph_batch_sizes(self):
start_graph_batch_size = 4
tp_size = get_tensor_model_parallel_world_size()
# NOTE: When use all2all | mc2, We need to slice the `num_tokens` dimension into `tp_size` blocks
start_graph_batch_size = max(start_graph_batch_size, tp_size)
while (start_graph_batch_size <= self.max_num_reqs):
self.torchair_graph_batch_sizes.append(start_graph_batch_size)
start_graph_batch_size *= 2
def select_torchair_padded_batch_size(self, batch_size: int):
for padded_batch_size in self.torchair_graph_batch_sizes:
if batch_size <= padded_batch_size:
# we treat batch_size as num of requests
return padded_batch_size
raise ValueError(
f"cur batch_size is invalid, torchair_graph_batch_sizes is "
f"{self.torchair_graph_batch_sizes}, but cur batch_size is {batch_size}."
)
def update_torchair_graph_batch_sizes(self):
# return graph_batch_sizes according to the max number of tokens
# first pad according to the number of requests
if self.is_kv_consumer and self.speculative_config and self.speculative_config.method == 'deepseek_mtp':
# pd disaggregation scenario may incorrectly calculate the batch in mtp scenario, so we force set it to max_num_reqs
self.torchair_graph_batch_sizes = [self.max_num_reqs]
logger.warning(
"is kv_consumer, torch_graph_batch_sizes sets to [max_num_seqs]"
)
elif len(self.torchair_graph_batch_sizes) == 0:
self.torchair_graph_batch_sizes = [1, self.max_num_reqs]
else:
self.torchair_graph_batch_sizes = sorted(
self.torchair_graph_batch_sizes)
while self.torchair_graph_batch_sizes[-1] > self.max_num_reqs:
self.torchair_graph_batch_sizes.pop()
if len(self.torchair_graph_batch_sizes) == 0:
logger.warning(
"torch_graph_batch_sizes is invalid, reset it to [1, max_num_seqs]"
)
self.torchair_graph_batch_sizes = [1, self.max_num_reqs]
if self.torchair_graph_batch_sizes[-1] < self.max_num_reqs:
self.torchair_graph_batch_sizes.append(self.max_num_reqs)
# padded max number tokens = max_num_req * decode_token_per_req
self.torchair_graph_batch_sizes = [
graph_batch_size * self.decode_token_per_req
for graph_batch_size in self.torchair_graph_batch_sizes
]
# NOTE: when enable_expert_parallel on A3, we need to check if `graph_batch_size` is divisible by `tp_size`
# Because we use x_active_mask for dispatch/combine op on A3, which requires that input shape should be same
# on all EP ranks
if get_ascend_soc_version(
) == AscendSocVersion.A3 and self.parallel_config.enable_expert_parallel:
self._align_graph_size_divisible_by_tp_size()
def _align_graph_size_divisible_by_tp_size(self):
tp_size = self.parallel_config.tensor_parallel_size
new_graph_batch_sizes = []
for graph_batch_size in self.torchair_graph_batch_sizes:
cur_graph_batch_size = (graph_batch_size + tp_size -
1) // tp_size * tp_size
# MTP > 1: Cal LCMLeast Common Multiple with graph_batch_size and tp_size,
# Both adapter multi-dp and FIA operator
if self.speculative_config is not None and self.speculative_config.num_speculative_tokens > 1:
cur_graph_batch_size = (tp_size * graph_batch_size) \
// math.gcd(tp_size, graph_batch_size)
if cur_graph_batch_size not in new_graph_batch_sizes and \
cur_graph_batch_size <= self.scheduler_config.max_num_batched_tokens:
new_graph_batch_sizes.append(cur_graph_batch_size)
elif cur_graph_batch_size > self.scheduler_config.max_num_batched_tokens \
and self.decode_token_per_req > 1:
logger.warning(
f"torchair_graph_batch_sizes {cur_graph_batch_size} is bigger than max_num_batched_tokens",
f"{self.scheduler_config.max_num_batched_tokens} will skip this batch size."
)
new_max_num_reqs = max(new_graph_batch_sizes)
if self.max_num_reqs != new_max_num_reqs:
logger.warning(f"max_num_reqs is updated to {new_max_num_reqs}")
self.max_num_reqs = new_max_num_reqs
self.scheduler_config.max_num_seqs = new_max_num_reqs
if new_graph_batch_sizes != self.torchair_graph_batch_sizes:
logger.warning(
f"torchair_graph_batch_sizes are updated to {new_graph_batch_sizes}."
)
self.torchair_graph_batch_sizes = new_graph_batch_sizes
def _build_drafter_prepare_inputs_torchair_param(self):
if self.enable_shared_expert_dp:
return super()._build_drafter_prepare_inputs_torchair_param()
else:
return True