mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-21 06:10:33 +08:00
This PR port optimization in PR #2002 to main and makes it cleaner.
- vLLM version: v0.10.0
- vLLM main:
afa5b7ca0b
---------
Signed-off-by: whx-sjtu <2952154980@qq.com>
505 lines
18 KiB
Python
505 lines
18 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import vllm.v1.sample.rejection_sampler as rs
|
|
from vllm.v1.sample.metadata import SamplingMetadata
|
|
from vllm.v1.sample.rejection_sampler import (RejectionSampler, compute_probs,
|
|
generate_uniform_probs)
|
|
from vllm.v1.spec_decode.metadata import SpecDecodeMetadata
|
|
|
|
PLACEHOLDER_TOKEN_ID = -1
|
|
GREEDY_TEMPERATURE = -1
|
|
# Maximum number of speculative draft tokens allowed per request in a single
|
|
# step. This value is chosen to be large enough to handle typical use cases.
|
|
MAX_SPEC_LEN = 32
|
|
|
|
|
|
class AscendRejectionSampler(RejectionSampler, nn.Module):
|
|
"""
|
|
The implementation strictly follows the algorithm described in
|
|
https://arxiv.org/abs/2211.17192.
|
|
However, we want to clarify the terminology used in the implementation:
|
|
accepted tokens: tokens that are accepted based on the relationship
|
|
between the "raw" draft and target probabilities.
|
|
recovered tokens: tokens that are sampled based on the adjusted probability
|
|
distribution, which is derived from both the draft and target
|
|
probabilities.
|
|
bonus tokens:
|
|
If all proposed tokens are accepted, the bonus token is added to the
|
|
end of the sequence. The bonus token is only sampled from the target
|
|
probabilities. We pass in the bonus tokens instead of sampling them
|
|
in the rejection sampler to allow for more flexibility in the
|
|
sampling process. For example, we can use top_p, top_k sampling for
|
|
bonus tokens, while spec decode does not support these sampling
|
|
strategies.
|
|
output tokens:
|
|
Tokens are finally generated with the rejection sampler.
|
|
output tokens = accepted tokens + recovered tokens + bonus tokens
|
|
"""
|
|
|
|
def forward(
|
|
self,
|
|
metadata: SpecDecodeMetadata,
|
|
# [num_tokens, vocab_size]
|
|
draft_probs: Optional[torch.Tensor],
|
|
# [num_tokens, vocab_size]
|
|
target_logits: torch.Tensor,
|
|
# [batch_size, 1]
|
|
bonus_token_ids: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> torch.Tensor:
|
|
'''
|
|
Args:
|
|
metadata:
|
|
Metadata for spec decoding.
|
|
draft_probs (Optional[torch.Tensor]):
|
|
Probability distribution for the draft tokens. Shape is
|
|
[num_tokens, vocab_size]. Can be None if probabilities are
|
|
not provided, which is the case for ngram spec decode.
|
|
target_logits (torch.Tensor):
|
|
Target model's logits probability distribution.
|
|
Shape is [num_tokens, vocab_size]. Here, probabilities from
|
|
different requests are flattened into a single tensor because
|
|
this is the shape of the output logits.
|
|
NOTE: `target_logits` can be updated in place to save memory.
|
|
bonus_token_ids_tensor (torch.Tensor):
|
|
A tensor containing bonus tokens. Shape is [batch_size, 1].
|
|
Bonus tokens are added to the end of the sequence if all
|
|
proposed tokens are accepted. We generate the bonus tokens
|
|
outside of the rejection sampler with the default sampling
|
|
strategy. It allows for more flexibility in the sampling
|
|
process such as top_p, top_k sampling.
|
|
sampling_metadata (SamplingMetadata):
|
|
Additional metadata needed for sampling, such as temperature,
|
|
top-k/top-p parameters, or other relevant information.
|
|
Returns:
|
|
output_token_ids (torch.Tensor):
|
|
A tensor containing the final output token IDs.
|
|
'''
|
|
assert metadata.max_spec_len <= MAX_SPEC_LEN
|
|
# [num_tokens, vocab_size]
|
|
# NOTE(woosuk): `target_logits` can be updated in place inside the
|
|
# `compute_probs` function.
|
|
target_probs = compute_probs(
|
|
target_logits,
|
|
metadata.cu_num_draft_tokens,
|
|
sampling_metadata,
|
|
)
|
|
|
|
output_token_ids = rejection_sample(
|
|
metadata.draft_token_ids,
|
|
metadata.num_draft_tokens,
|
|
metadata.max_spec_len,
|
|
metadata.cu_num_draft_tokens,
|
|
draft_probs,
|
|
target_probs,
|
|
bonus_token_ids,
|
|
sampling_metadata,
|
|
)
|
|
return output_token_ids
|
|
|
|
|
|
def rejection_sample(
|
|
# [num_tokens]
|
|
draft_token_ids: torch.Tensor,
|
|
# [batch_size]
|
|
num_draft_tokens: list[int],
|
|
max_spec_len: int,
|
|
# [batch_size]
|
|
cu_num_draft_tokens: torch.Tensor,
|
|
# [num_tokens, vocab_size]
|
|
draft_probs: Optional[torch.Tensor],
|
|
# [num_tokens, vocab_size]
|
|
target_probs: torch.Tensor,
|
|
# [batch_size, 1]
|
|
bonus_token_ids: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> torch.Tensor:
|
|
assert draft_token_ids.ndim == 1
|
|
assert draft_probs is None or draft_probs.ndim == 2
|
|
assert cu_num_draft_tokens.ndim == 1
|
|
assert target_probs.ndim == 2
|
|
|
|
batch_size = len(num_draft_tokens)
|
|
num_tokens = draft_token_ids.shape[0]
|
|
vocab_size = target_probs.shape[-1]
|
|
device = target_probs.device
|
|
assert draft_token_ids.is_contiguous()
|
|
assert draft_probs is None or draft_probs.is_contiguous()
|
|
assert target_probs.is_contiguous()
|
|
assert bonus_token_ids.is_contiguous()
|
|
assert target_probs.shape == (num_tokens, vocab_size)
|
|
|
|
# Create output buffer.
|
|
output_token_ids = torch.empty(
|
|
(batch_size, max_spec_len + 1),
|
|
dtype=torch.int32, # Consistent with SamplerOutput.sampled_token_ids.
|
|
device=device,
|
|
)
|
|
output_token_ids.fill_(PLACEHOLDER_TOKEN_ID)
|
|
|
|
if sampling_metadata.all_greedy:
|
|
is_greedy = None
|
|
else:
|
|
is_greedy = sampling_metadata.temperature == GREEDY_TEMPERATURE
|
|
if not sampling_metadata.all_random:
|
|
# Rejection sampling for greedy sampling requests.
|
|
target_argmax = target_probs.argmax(dim=-1)
|
|
if min(num_draft_tokens) == 1 and max(
|
|
num_draft_tokens) == 1 and sampling_metadata.all_greedy:
|
|
rejection_greedy_sample_spec_len_1_pytorch(
|
|
output_token_ids,
|
|
draft_token_ids,
|
|
target_argmax,
|
|
bonus_token_ids,
|
|
)
|
|
else:
|
|
rejection_greedy_sample_pytorch(
|
|
output_token_ids,
|
|
cu_num_draft_tokens,
|
|
draft_token_ids,
|
|
target_argmax,
|
|
bonus_token_ids,
|
|
num_draft_tokens,
|
|
max_spec_len,
|
|
is_greedy,
|
|
)
|
|
if sampling_metadata.all_greedy:
|
|
return output_token_ids
|
|
|
|
# Generate uniform probabilities for rejection sampling.
|
|
# [num_tokens]
|
|
uniform_probs = generate_uniform_probs(
|
|
num_tokens,
|
|
num_draft_tokens,
|
|
sampling_metadata.generators,
|
|
device,
|
|
)
|
|
|
|
# Sample recovered tokens for each position.
|
|
# [num_tokens]
|
|
recovered_token_ids = sample_recovered_tokens(
|
|
max_spec_len,
|
|
num_draft_tokens,
|
|
cu_num_draft_tokens,
|
|
draft_token_ids,
|
|
draft_probs,
|
|
target_probs,
|
|
sampling_metadata,
|
|
device,
|
|
)
|
|
|
|
# Rejection sampling for random sampling requests.
|
|
rejection_random_sample_pytorch(
|
|
output_token_ids,
|
|
cu_num_draft_tokens,
|
|
draft_token_ids,
|
|
draft_probs,
|
|
target_probs,
|
|
bonus_token_ids,
|
|
recovered_token_ids,
|
|
uniform_probs,
|
|
is_greedy,
|
|
max_spec_len,
|
|
vocab_size,
|
|
IS_NGRAM=draft_probs is None,
|
|
# num_warps=1,
|
|
)
|
|
return output_token_ids
|
|
|
|
|
|
def expand_batch_to_tokens(
|
|
x: torch.Tensor, # [batch_size]
|
|
cu_num_tokens: torch.Tensor, # [batch_size]
|
|
num_tokens: int,
|
|
replace_from: int = 0,
|
|
replace_to: int = 0,
|
|
) -> torch.Tensor:
|
|
"""Expand [batch_size] tensor to [num_tokens] tensor based on the number of
|
|
tokens per batch in cu_num_tokens.
|
|
|
|
For example, if x = [a, b, c] and cu_num_tokens = [2, 5, 6], then
|
|
num_tokens = 6, and expanded_x = [a, a, b, b, b, c].
|
|
|
|
Args:
|
|
x: [batch_size] tensor to expand.
|
|
cu_num_tokens: [batch_size] tensor containing the cumulative number of
|
|
tokens per batch. Each element represents the total number of
|
|
tokens up to and including that batch.
|
|
num_tokens: Total number of tokens.
|
|
replace_from: int = 0
|
|
Value to be replaced if it is found in x.
|
|
replace_to: int = 0
|
|
Value to replace with when replace_from is found.
|
|
Returns:
|
|
expanded_x: [num_tokens] tensor.
|
|
"""
|
|
batch_size = x.shape[0]
|
|
assert cu_num_tokens.shape[0] == batch_size
|
|
expanded_x = x.new_empty(num_tokens)
|
|
expand_pytorch(
|
|
expanded_x,
|
|
x,
|
|
cu_num_tokens,
|
|
replace_from,
|
|
replace_to,
|
|
MAX_NUM_TOKENS=MAX_SPEC_LEN, # To avoid recompilation.
|
|
)
|
|
return expanded_x
|
|
|
|
|
|
def sample_recovered_tokens(
|
|
max_spec_len: int,
|
|
num_draft_tokens: list[int],
|
|
# [batch_size]
|
|
cu_num_draft_tokens: torch.Tensor,
|
|
# [num_tokens]
|
|
draft_token_ids: torch.Tensor,
|
|
# [num_tokens, vocab_size]
|
|
draft_probs: Optional[torch.Tensor],
|
|
# [num_tokens, vocab_size]
|
|
target_probs: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
device: torch.device,
|
|
) -> torch.Tensor:
|
|
# NOTE(woosuk): Create only one distribution for each request.
|
|
batch_size = len(num_draft_tokens)
|
|
vocab_size = target_probs.shape[-1]
|
|
q = torch.empty(
|
|
(batch_size, vocab_size),
|
|
dtype=torch.float32,
|
|
device=device,
|
|
)
|
|
q.exponential_()
|
|
for i, generator in sampling_metadata.generators.items():
|
|
# Do not generate random numbers for requests with no draft tokens.
|
|
# This can be important for reproducibility.
|
|
if num_draft_tokens[i] > 0:
|
|
q[i].exponential_(generator=generator)
|
|
|
|
recovered_token_ids = torch.empty_like(draft_token_ids)
|
|
sample_recovered_tokens_pytorch(
|
|
recovered_token_ids,
|
|
cu_num_draft_tokens,
|
|
draft_token_ids,
|
|
draft_probs,
|
|
target_probs,
|
|
q,
|
|
vocab_size,
|
|
IS_NGRAM=draft_probs is None,
|
|
)
|
|
return recovered_token_ids
|
|
|
|
|
|
def rejection_greedy_sample_spec_len_1_pytorch(
|
|
output_token_ids, # [batch_size, 2]
|
|
draft_token_ids, # [num_tokens]
|
|
target_argmax, # [num_tokens]
|
|
bonus_token_ids, # [batch_size]
|
|
):
|
|
batch_size = output_token_ids.size(0)
|
|
num_tokens = draft_token_ids.size(0)
|
|
assert batch_size == num_tokens
|
|
accept_req_mask = draft_token_ids == target_argmax
|
|
output_token_ids[:, 0] = target_argmax
|
|
bonus_token_ids = bonus_token_ids.squeeze(1)
|
|
output_token_ids[accept_req_mask, 1] = bonus_token_ids[accept_req_mask]
|
|
|
|
|
|
def rejection_greedy_sample_pytorch(
|
|
output_token_ids, # [batch_size, max_spec_len + 1]
|
|
cu_num_draft_tokens, # [batch_size]
|
|
draft_token_ids, # [num_tokens]
|
|
target_argmax, # [num_tokens]
|
|
bonus_token_ids, # [batch_size]
|
|
draft_tokens_per_req, # [batch_size], list
|
|
max_spec_len,
|
|
is_greedy=None, # [batch_size] or None
|
|
):
|
|
batch_size = output_token_ids.size(0)
|
|
num_tokens = draft_token_ids.size(0)
|
|
device = output_token_ids.device
|
|
draft_tokens_per_req = torch.tensor(draft_tokens_per_req).to(
|
|
device, non_blocking=True)
|
|
if is_greedy is None:
|
|
is_greedy = torch.ones(batch_size, dtype=torch.bool, device=device)
|
|
|
|
start_indices = cu_num_draft_tokens - draft_tokens_per_req
|
|
req_ids = torch.arange(batch_size, device=device)
|
|
token_req_ids = torch.repeat_interleave(req_ids, draft_tokens_per_req)
|
|
token_positions = torch.arange(
|
|
num_tokens, device=device) - start_indices[token_req_ids]
|
|
|
|
# Find the first mismatch position of each request.
|
|
mismatch_global = (draft_token_ids != target_argmax)
|
|
if max_spec_len == 0:
|
|
first_mismatch_pos_per_req = torch.zeros(batch_size,
|
|
dtype=torch.long,
|
|
device=device)
|
|
else:
|
|
# [bs, max_spec_len]
|
|
pos_matrix = torch.full((batch_size, max_spec_len),
|
|
-1,
|
|
dtype=torch.long,
|
|
device=device)
|
|
pos_matrix[token_req_ids, token_positions] = token_positions
|
|
mismatch_matrix = torch.full((batch_size, max_spec_len),
|
|
False,
|
|
dtype=torch.bool,
|
|
device=device)
|
|
mismatch_matrix[token_req_ids, token_positions] = mismatch_global
|
|
mismatch_positions = torch.where(mismatch_matrix, pos_matrix,
|
|
max_spec_len * 2)
|
|
first_mismatch_pos_per_req, _ = torch.min(mismatch_positions, dim=1)
|
|
no_mismatch_mask = (first_mismatch_pos_per_req == max_spec_len * 2)
|
|
first_mismatch_pos_per_req[no_mismatch_mask] = draft_tokens_per_req[
|
|
no_mismatch_mask]
|
|
|
|
# Copy matched target tokens into output.
|
|
copy_len = torch.minimum(first_mismatch_pos_per_req + 1,
|
|
draft_tokens_per_req)
|
|
copy_indices = torch.arange(max_spec_len + 1,
|
|
device=device).expand(batch_size, -1)
|
|
copy_mask = copy_indices < copy_len.unsqueeze(1)
|
|
greedy_mask = is_greedy.unsqueeze(1)
|
|
final_copy_mask = copy_mask & greedy_mask
|
|
global_idx = start_indices.unsqueeze(1) + copy_indices
|
|
output_token_ids[final_copy_mask] = target_argmax[
|
|
global_idx[final_copy_mask]].to(output_token_ids.dtype)
|
|
# Fill bonus token.
|
|
needs_bonus = is_greedy & (first_mismatch_pos_per_req
|
|
>= draft_tokens_per_req)
|
|
if torch.any(needs_bonus):
|
|
bonus_rows = torch.where(needs_bonus)[0]
|
|
bonus_cols = draft_tokens_per_req[bonus_rows]
|
|
bonus_token_ids = bonus_token_ids.squeeze(1)
|
|
output_token_ids[bonus_rows, bonus_cols] = bonus_token_ids[bonus_rows]
|
|
|
|
|
|
def rejection_random_sample_pytorch(
|
|
output_token_ids, # [batch_size, max_spec_len + 1]
|
|
cu_num_draft_tokens, # [batch_size]
|
|
draft_token_ids, # [num_tokens]
|
|
draft_probs, # [num_tokens, vocab_size] or None
|
|
target_probs, # [num_tokens, vocab_size]
|
|
bonus_token_ids, # [batch_size]
|
|
recovered_token_ids, # [num_tokens]
|
|
uniform_probs, # [num_tokens]
|
|
is_greedy, # [batch_size]
|
|
max_spec_len,
|
|
vocab_size,
|
|
IS_NGRAM=False,
|
|
):
|
|
batch_size = output_token_ids.shape[0]
|
|
|
|
for req_idx in range(batch_size):
|
|
if is_greedy[req_idx]:
|
|
continue
|
|
|
|
if req_idx == 0:
|
|
start_idx = 0
|
|
else:
|
|
start_idx = cu_num_draft_tokens[req_idx - 1].item()
|
|
end_idx = cu_num_draft_tokens[req_idx].item()
|
|
num_draft_tokens = end_idx - start_idx
|
|
|
|
rejected = False
|
|
for pos in range(num_draft_tokens):
|
|
if not rejected:
|
|
draft_token_id = draft_token_ids[start_idx + pos].item()
|
|
|
|
if IS_NGRAM:
|
|
draft_prob = 1.0
|
|
else:
|
|
draft_prob = draft_probs[start_idx + pos,
|
|
draft_token_id].item()
|
|
|
|
target_prob = target_probs[start_idx + pos,
|
|
draft_token_id].item()
|
|
uniform_prob = uniform_probs[start_idx + pos].item()
|
|
|
|
if draft_prob > 0 and target_prob / draft_prob >= uniform_prob:
|
|
token_id = draft_token_id
|
|
else:
|
|
rejected = True
|
|
token_id = recovered_token_ids[start_idx + pos].item()
|
|
|
|
output_token_ids[req_idx, pos] = token_id
|
|
|
|
if not rejected:
|
|
bonus_token_id = bonus_token_ids[req_idx].item()
|
|
output_token_ids[req_idx, num_draft_tokens] = bonus_token_id
|
|
|
|
|
|
def expand_pytorch(
|
|
output_ptr, # [num_tokens]
|
|
input_ptr, # [batch_size]
|
|
cu_num_tokens_ptr, # [batch_size]
|
|
replace_from,
|
|
replace_to,
|
|
MAX_NUM_TOKENS,
|
|
):
|
|
batch_size = len(input_ptr)
|
|
|
|
for req_idx in range(batch_size):
|
|
start_idx = 0 if req_idx == 0 else cu_num_tokens_ptr[req_idx - 1]
|
|
end_idx = cu_num_tokens_ptr[req_idx]
|
|
num_tokens = end_idx - start_idx
|
|
|
|
src_val = input_ptr[req_idx]
|
|
src_val = replace_to if src_val == replace_from else src_val
|
|
|
|
offset = torch.arange(MAX_NUM_TOKENS, device=num_tokens.device)
|
|
mask = offset < num_tokens
|
|
|
|
output_slice = start_idx + offset[mask]
|
|
output_ptr[output_slice] = src_val
|
|
|
|
|
|
def sample_recovered_tokens_pytorch(
|
|
output_token_ids, # [num_tokens]
|
|
cu_num_draft_tokens, # [batch_size]
|
|
draft_token_ids, # [num_tokens]
|
|
draft_probs, # [num_tokens, vocab_size] or None
|
|
target_probs, # [num_tokens, vocab_size]
|
|
q, # [batch_size, vocab_size]
|
|
vocab_size,
|
|
IS_NGRAM=False,
|
|
):
|
|
batch_size = len(cu_num_draft_tokens)
|
|
|
|
for req_idx in range(batch_size):
|
|
start_idx = 0 if req_idx == 0 else cu_num_draft_tokens[req_idx - 1]
|
|
end_idx = cu_num_draft_tokens[req_idx]
|
|
num_draft_tokens = end_idx - start_idx
|
|
|
|
for pos in range(num_draft_tokens):
|
|
token_idx = start_idx + pos
|
|
|
|
if IS_NGRAM:
|
|
draft_token_id = draft_token_ids[token_idx]
|
|
orig_prob = target_probs[token_idx, draft_token_id].item()
|
|
target_probs[token_idx, draft_token_id] = 0
|
|
prob = target_probs[token_idx].clone()
|
|
else:
|
|
draft_p = draft_probs[token_idx].clone()
|
|
target_p = target_probs[token_idx].clone()
|
|
prob = torch.maximum(target_p - draft_p,
|
|
torch.tensor(0.0, device=target_p.device))
|
|
|
|
q_values = torch.full((vocab_size, ),
|
|
float('-inf'),
|
|
device=q.device)
|
|
q_values[:vocab_size] = q[req_idx, :vocab_size]
|
|
|
|
recovered_id = torch.argmax(prob / q_values).item()
|
|
output_token_ids[token_idx] = recovered_id
|
|
|
|
if IS_NGRAM:
|
|
target_probs[token_idx, draft_token_id] = orig_prob
|
|
|
|
|
|
rs.expand_batch_to_tokens = expand_batch_to_tokens
|