Files
vllm-ascend/vllm_ascend/ascend_config.py
linfeng-yuan 068ed706c8 [feat][torchair] support super kernel feat for quantized dsr1 (#3485)
### What this PR does / why we need it?
Port #1916 and #2157 to master branch to fuse operators in deepseek moe
layers, which can reduce scheduling overhead on devices. Note that this
feature is valid only when `tp_size = 1` and
`multistream_overlap_shared_expert` is enabled with torchair graph mode.

### Does this PR introduce _any_ user-facing change?
Users can enable this feature with `--additional-config
'{"torchair_graph_config":{"enabled":true, "enable_super_kernel":true},
"multistream_overlap_shared_expert":true}'`.

### How was this patch tested?
E2E deepseek serving with 2P1D disaggregated prefill scenarios.


- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

---------

Signed-off-by: linfeng-yuan <1102311262@qq.com>
2025-10-20 20:04:37 +08:00

309 lines
14 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# This file is a part of the vllm-ascend project.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
from vllm.logger import logger
TORCHAIR_MODEL_LIST = ["deepseek", "pangu", "kimi_k2", "qwen"]
def _check_torchair_supported(model_type: str):
for supported_model in TORCHAIR_MODEL_LIST:
if supported_model in model_type.lower():
return True
return False
class AscendConfig:
"""
Configuration Object for additional_config from vllm.configs.
"""
def __init__(self, vllm_config):
additional_config = vllm_config.additional_config if vllm_config.additional_config is not None else {}
torchair_graph_config = additional_config.get("torchair_graph_config",
{})
self.torchair_graph_config = TorchairGraphConfig(
torchair_graph_config, vllm_config, additional_config)
ascend_scheduler_config = additional_config.get(
"ascend_scheduler_config", {})
self.ascend_scheduler_config = AscendSchedulerConfig(
ascend_scheduler_config)
weight_prefetch_config = additional_config.get(
"weight_prefetch_config", {})
self.weight_prefetch_config = WeightPrefetchConfig(
weight_prefetch_config)
# Todo: Once https://github.com/vllm-project/vllm/issues/22246 is merged in vllm. Remove this config
self.expert_map_path = additional_config.get("expert_map_path", None)
self.eplb_policy_type = additional_config.get("eplb_policy_type", 1)
self.expert_map_record_path = additional_config.get(
"expert_map_record_path",
None) # Provide path to export expert map
self.init_redundancy_expert = additional_config.get(
"init_redundancy_expert", 0)
self.dynamic_eplb = additional_config.get("dynamic_eplb", False)
self.num_iterations_eplb_update = additional_config.get(
"num_iterations_eplb_update", 400)
self.gate_eplb = additional_config.get("gate_eplb", False)
self.num_wait_worker_iterations = additional_config.get(
"num_wait_worker_iterations", 30)
self.chunked_prefill_for_mla = additional_config.get(
"chunked_prefill_for_mla", False)
self.enable_shared_expert_dp = additional_config.get(
"enable_shared_expert_dp", False
) and not self.torchair_graph_config.enabled and vllm_config.parallel_config.enable_expert_parallel
self.multistream_overlap_shared_expert = additional_config.get(
"multistream_overlap_shared_expert", False)
self.recompute_scheduler_enable = additional_config.get(
"recompute_scheduler_enable", False)
self.lmhead_tensor_parallel_size = additional_config.get(
"lmhead_tensor_parallel_size", None)
if self.lmhead_tensor_parallel_size is not None:
logger.info(
f"Enable lmhead_tensor_parallel_size={self.lmhead_tensor_parallel_size} in pure DP scenario"
)
if vllm_config.parallel_config.tensor_parallel_size != 1:
raise AssertionError(
"lmhead_tensor_parallel_size is only supported in the pure DP scenario"
)
self.oproj_tensor_parallel_size = additional_config.get(
"oproj_tensor_parallel_size", None)
if self.oproj_tensor_parallel_size is not None:
logger.info(
f"Enable oproj_tensor_parallel_size={self.oproj_tensor_parallel_size} in pure DP scenario"
)
if vllm_config.parallel_config.tensor_parallel_size != 1:
raise AssertionError(
"oproj_tensor_parallel_size is only supported in the pure DP scenario"
)
if not self.torchair_graph_config.enabled:
raise AssertionError(
"oproj_tensor_parallel_size is only supported in graph mode"
)
if vllm_config.kv_transfer_config is None or not vllm_config.kv_transfer_config.is_kv_consumer:
raise AssertionError(
"oproj_tensor_parallel_size is only supported in pd scenario and can only be used in D node."
)
self.pd_tp_ratio = 1
self.pd_head_ratio = 1
self.num_head_replica = 1
if vllm_config.kv_transfer_config is not None and not vllm_config.model_config.is_deepseek_mla:
prefill_tp_size = vllm_config.kv_transfer_config.get_from_extra_config(
"prefill", {"tp_size": 1})["tp_size"]
decode_tp_size = vllm_config.kv_transfer_config.get_from_extra_config(
"decode", {"tp_size": 1})["tp_size"]
assert prefill_tp_size % decode_tp_size == 0, "Prefill TP size must be divisible by Decode TP size."
self.pd_tp_ratio = prefill_tp_size // decode_tp_size
if self.pd_tp_ratio > 1:
try:
# only support Qwen model now
# TODO: use a more robust method to get kv_head_num
num_kv_head = vllm_config.model_config.hf_config.num_key_value_heads
self.num_head_replica = prefill_tp_size // num_kv_head if prefill_tp_size >= num_kv_head else 1
prefill_tp_size = min(prefill_tp_size, num_kv_head)
decode_tp_size = min(decode_tp_size, num_kv_head)
self.pd_head_ratio = prefill_tp_size // decode_tp_size
except Exception:
raise AssertionError(
"Can not get num_key_value_heads from model_config")
if self.pd_tp_ratio == 0:
raise AssertionError(
"Only support P node tp size lagger then D node tp size")
class TorchairGraphConfig:
"""
Configuration Object for torchair_graph_config from additional_config
"""
def __init__(self, torchair_graph_config, vllm_config, additional_config):
self.enabled = torchair_graph_config.get("enabled", False)
self.mode = torchair_graph_config.get("mode", '')
self.use_cached_graph = torchair_graph_config.get(
"use_cached_graph", False)
self.use_cached_kv_cache_bytes = torchair_graph_config.get(
"use_cached_kv_cache_bytes", False)
self.graph_batch_sizes = torchair_graph_config.get(
"graph_batch_sizes", [])
self.graph_batch_sizes_init = torchair_graph_config.get(
"graph_batch_sizes_init", False)
self.enable_multistream_mla = torchair_graph_config.get(
"enable_multistream_mla", False)
self.enable_view_optimize = torchair_graph_config.get(
"enable_view_optimize", True)
self.enable_frozen_parameter = torchair_graph_config.get(
"enable_frozen_parameter", True)
self.enable_kv_nz = torchair_graph_config.get("enable_kv_nz", False)
self.enable_super_kernel = torchair_graph_config.get(
"enable_super_kernel", False)
if not isinstance(self.graph_batch_sizes, list):
raise TypeError("graph_batch_sizes must be list[int]")
if self.graph_batch_sizes_init and len(self.graph_batch_sizes) > 0:
raise ValueError(
"graph_batch_sizes_init is only valid when graph_batch_sizes is empty"
)
if not self.enabled:
if self.mode:
raise RuntimeError(
"mode is valid only when Torchair graph mode is enabled")
if self.use_cached_graph:
raise RuntimeError(
"use_cached_graph is valid only when Torchair graph mode is enabled"
)
if self.use_cached_kv_cache_bytes:
raise RuntimeError(
"use_cached_kv_cache_bytes is valid only when Torchair graph mode is enabled"
)
if self.graph_batch_sizes:
raise RuntimeError(
"graph_batch_sizes is valid only when Torchair graph mode is enabled"
)
if self.graph_batch_sizes_init:
raise RuntimeError(
"graph_batch_sizes_init is valid only when Torchair graph mode is enabled"
)
if self.enable_multistream_mla:
raise RuntimeError(
"enable_multistream_mla is valid only when Torchair graph mode is enabled"
)
if self.enable_kv_nz:
raise RuntimeError(
"enable_kv_nz is valid only when Torchair graph mode is enabled"
)
if self.enable_super_kernel:
raise RuntimeError(
"enable_super_kernel is valid only when Torchair graph mode is enabled"
)
if self.enable_super_kernel:
if vllm_config.parallel_config.tensor_parallel_size != 1:
raise RuntimeError(
"enable_super_kernel is valid only when tensor_parallel_size is 1"
)
if not additional_config.get("multistream_overlap_shared_expert",
False):
raise RuntimeError(
"enable_super_kernel is valid only when multistream_overlap_shared_expert is enabled"
)
if self.use_cached_kv_cache_bytes and not self.use_cached_graph:
raise RuntimeError(
"use_cached_kv_cache_bytes is valid only when Torchair graph mode and use_cached_graph are enabled"
)
class AscendSchedulerConfig:
"""
Configuration Object for ascend_scheduler_config from additional_config
"""
def __init__(self, ascend_scheduler_config: dict):
self.enabled = ascend_scheduler_config.get("enabled", False)
# Ascend scheduler is based on vllm v0 scheduler, so we should support
# all vllm v0 scheduler configs as well.
for k, v in ascend_scheduler_config.items():
if not hasattr(self, k):
setattr(self, k, v)
class WeightPrefetchConfig:
"""
Configuration Object for weight_prefetch_config from additional_config
"""
prefetch_ratio: dict = {
"attn": {
"qkv": 1.0,
"o": 1.0,
},
"moe": {
"gate_up": 0.8
}
}
def __init__(self, weight_prefetch_config: dict):
self.enabled = weight_prefetch_config.get("enabled", False)
self.prefetch_ratio = weight_prefetch_config.get(
"prefetch_ratio", self.prefetch_ratio)
_ASCEND_CONFIG: Optional[AscendConfig] = None
def init_ascend_config(vllm_config):
additional_config = vllm_config.additional_config if vllm_config.additional_config is not None else {}
refresh = additional_config.get("refresh",
False) if additional_config else False
global _ASCEND_CONFIG
if _ASCEND_CONFIG is not None and not refresh:
return _ASCEND_CONFIG
_ASCEND_CONFIG = AscendConfig(vllm_config)
return _ASCEND_CONFIG
def clear_ascend_config():
global _ASCEND_CONFIG
_ASCEND_CONFIG = None
def get_ascend_config():
global _ASCEND_CONFIG
if _ASCEND_CONFIG is None:
raise RuntimeError(
"Ascend config is not initialized. Please call init_ascend_config first."
)
return _ASCEND_CONFIG
def check_ascend_config(vllm_config, enforce_eager):
ascend_config = get_ascend_config()
# for eager mode
if enforce_eager:
# torchair_graph cannot be enabled with eager mode.
if ascend_config.torchair_graph_config.enabled:
raise RuntimeError(
"Can't enable graph mode and eager mode at the same time. Please set `enforce_eager=False` if you attempt to enable NPU graph mode."
)
# for graph mode
else:
# torchair_graph case
if ascend_config.torchair_graph_config.enabled:
# torchair_graph is supported for deepseek/pangu/qwen model only.
if vllm_config.model_config:
model_type = vllm_config.model_config.hf_config.model_type
if not _check_torchair_supported(model_type):
raise NotImplementedError(
"Torchair graph mode only works with following model types:"
f"{TORCHAIR_MODEL_LIST}.")
if ascend_config.enable_shared_expert_dp:
logger.warning(
"enable_shared_expert_dp is not supported for torchair graph mode currently, "
"it has been disabled automatically.")
# aclgraph case
else:
if vllm_config.model_config:
model_type = vllm_config.model_config.hf_config.model_type
if "qwen" not in model_type:
logger.warning(
"ACL Graph is currently experimental. Please "
"raise an issue on https://github.com/vllm-project/vllm-ascend/issues"
" if you encourage any Error")