Files
vllm-ascend/csrc/kernels/pos_encoding_kernels.cpp
Pleaplusone 19fdc9a3f0 [Bugfix] Fix header include issue in rope (#2397)
### What this PR does / why we need it?
vLLM-Ascend's rope implementaion include several header file that are
not supposed to be included by outside users. Current implementation may
break when canntoolkits update, this PR remove those not compatible file
includes to guarantee the safety of upgrading cann toolkits.

### Does this PR introduce _any_ user-facing change?
No

### How was this patch tested?
Tested by rope unittest

- vLLM version: v0.10.0
- vLLM main:
3e6dd40016

Signed-off-by: ganyi <pleaplusone.gy@gmail.com>
2025-08-18 14:33:38 +08:00

372 lines
19 KiB
C++

/*
* Copyright (c) Huawei Technologies Co., Ltd. 2024. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel_operator.h"
#include <stdio.h>
#include "types.h"
#include "utils.h"
using vllm_ascend::AccType;
using vllm_ascend::local_mem_copy;
template <typename scalar_t, bool isNeox> class RotaryEmbedding {
// NOTE(ganyi): we use 512B as load stride for pipe, need to find another way to
// retrieve this size from runtime for more Soc support
#if (__CCE_AICORE__ >= 220)
static int constexpr loadSize = 512;
#else
static int constexpr loadSize = 1024 * 4;
#endif
using dst_t = scalar_t;
using acc_t = typename AccType<scalar_t>::type;
// only half tensor have cast instruct to int8, hardcode acc_dst_t as half
using local_scalar_t = AscendC::LocalTensor<scalar_t>;
using local_acc_t = AscendC::LocalTensor<acc_t>;
using local_dst_t = AscendC::LocalTensor<dst_t>;
public:
__aicore__ inline RotaryEmbedding()
{
}
// Allocate buffers for input and output queue and the temp buffer used during kernel compute process,
// this init process happens only in the kernel compute on a single vector core.
__aicore__ inline void init(__gm__ int64_t *positions, __gm__ void *queryDst, __gm__ void *keyDst,
__gm__ scalar_t *query, __gm__ scalar_t *key, __gm__ scalar_t *cosSinCache,
const int rotDim, const int64_t dstQueryStride,
const int64_t dstKeyStride, const int64_t queryStride, const int64_t keyStride,
const int numHeads, const int numKvHeads, const int headSize, AscendC::TPipe *pipe)
{
pipe_ = pipe;
rotDim_ = rotDim;
// query stride and key stride is used to handle the strided tensor which is not contiguous on num_tokens dim
queryStride_ = queryStride;
keyStride_ = keyStride;
dstQueryStride_ = dstQueryStride;
dstKeyStride_ = dstKeyStride;
numHeads_ = numHeads;
numKvHeads_ = numKvHeads;
headSize_ = headSize;
embedDim_ = rotDim / 2;
pipe_->InitBuffer(inQue_, 1 /* buffer_num */, loadSize /* buffer_size */);
pipe_->InitBuffer(inQueSinCos_, 1 /* buffer_num */, rotDim_ * sizeof(scalar_t) /* buffer_size */);
pipe_->InitBuffer(outQue_, 1 /* buffer_num */, loadSize /* buffer_size */);
// 2 temporary calculation buffer
calcTmpBufferOffset_ = 0;
// 1 upcast buffer for bf16 (headSize)
upcastInputBufferOffset_ = calcTmpBufferOffset_ + sizeof(acc_t) * embedDim_ * 2;
// 1 upcast temp buffer for bf16 (2 * embed_dim)
upcastTempBufferOffset_ = upcastInputBufferOffset_ + sizeof(acc_t) * headSize_;
// 2 sin cos upcast buffer for bf16
cosSinUpcastBufferOffset_ = upcastTempBufferOffset_ + sizeof(acc_t) * 2 * embedDim_;
// 2. bf16 path: needs 2 cos sin upcast buffer size
// 3. fp16 path: needs 2 temporary calculation buffer size
tempBufferSize_ = cosSinUpcastBufferOffset_ + 2 * embedDim_ * sizeof(acc_t);
// need to consider upcast the bf16 to fp32, so we might need 4 buffer just in case
// 2 temporary buffer, 2 input buffer, 1 cos buffer, 1 sin buffer, 2 scale buffer (headSize), 2 zp
// buffer(headSize int8), 1 dst_temp buffer(headSize, int32)
pipe_->InitBuffer(calcBuf_, tempBufferSize_ /* buffer_size */);
if constexpr (!std::is_same_v<scalar_t, acc_t>) {
pipe_->InitBuffer(copyBuf_, loadSize);
}
}
__aicore__ inline void update_mem_offset(__gm__ int64_t *positions, __gm__ void *queryDst, __gm__ void *keyDst,
__gm__ scalar_t *query, __gm__ scalar_t *key, __gm__ scalar_t *cosSinCache,
const int rotDim, const int64_t dstQueryStride, const int64_t dstKeyStride,
const int64_t queryStride, const int64_t keyStride, const int numHeads,
const int numKvHeads, const int headSize, const int64_t idx)
{
int64_t pos = positions[idx];
cosSin_.SetGlobalBuffer(cosSinCache + pos * rotDim_, rotDim_);
query_.SetGlobalBuffer(query + queryStride * idx, headSize * numHeads_);
key_.SetGlobalBuffer(key + keyStride * idx, headSize * numKvHeads_);
queryDst_.SetGlobalBuffer(reinterpret_cast<__gm__ dst_t *>(queryDst) + dstQueryStride * idx,
headSize * numHeads_);
keyDst_.SetGlobalBuffer(reinterpret_cast<__gm__ dst_t *>(keyDst) + dstKeyStride * idx, headSize * numKvHeads_);
}
// compute per head for neox on bf16
template <typename acc_t_, typename std::enable_if<!std::is_same_v<acc_t_, scalar_t>, void>::type * = nullptr>
__aicore__ inline void
neox_compute(local_scalar_t src, local_dst_t dst, AscendC::LocalTensor<acc_t_> sin, AscendC::LocalTensor<acc_t_> cos,
AscendC::LocalTensor<acc_t_> upcastInputBuffer, AscendC::LocalTensor<acc_t_> calcTmpBuffer)
{
// slice dst
local_dst_t dstX = dst;
local_dst_t dstY = dst[embedDim_];
// slice src
local_scalar_t srcX = src;
local_scalar_t srcY = src[embedDim_];
// slice temp buffer
local_acc_t calcTmpBufferX = calcTmpBuffer;
local_acc_t calcTmpBufferY = calcTmpBuffer[embedDim_];
// slice upcast input buffer
local_acc_t upcastBufferX = upcastInputBuffer;
local_acc_t upcastBufferY = upcastBufferX[embedDim_];
// dst x calc
Cast(upcastInputBuffer, src, AscendC::RoundMode::CAST_NONE, headSize_);
Mul(calcTmpBufferX, upcastBufferX, cos, embedDim_);
Mul(calcTmpBufferY, upcastBufferY, sin, embedDim_);
Sub(calcTmpBufferX, calcTmpBufferX, calcTmpBufferY, embedDim_);
Cast(dstX, calcTmpBufferX, AscendC::RoundMode::CAST_TRUNC, embedDim_);
// dst y calc
Mul(calcTmpBufferX, upcastBufferX, sin, embedDim_);
Mul(calcTmpBufferY, upcastBufferY, cos, embedDim_);
Add(calcTmpBufferX, calcTmpBufferX, calcTmpBufferY, embedDim_);
Cast(dstY, calcTmpBufferX, AscendC::RoundMode::CAST_TRUNC, embedDim_);
}
// compute per head output for neox
template <typename acc_t_, typename std::enable_if<std::is_same_v<acc_t_, scalar_t>, void>::type * = nullptr>
__aicore__ inline void
neox_compute(local_scalar_t src, local_dst_t dst, AscendC::LocalTensor<acc_t_> sin, AscendC::LocalTensor<acc_t_> cos,
AscendC::LocalTensor<acc_t_> upcastInputBuffer, AscendC::LocalTensor<acc_t_> calcTmpBuffer)
{
// slice dst buffer
local_dst_t dstX = dst;
local_dst_t dstY = dst[embedDim_];
// slice src buffer
local_scalar_t srcX = src;
local_scalar_t srcY = src[embedDim_];
// slice temp buffer
local_acc_t calcTmpBufferX = calcTmpBuffer;
local_acc_t calcTmpBufferY = calcTmpBuffer[embedDim_];
// dst x calc
Mul(calcTmpBufferX, srcX, cos, embedDim_);
Mul(calcTmpBufferY, srcY, sin, embedDim_);
Sub(dstX, calcTmpBufferX, calcTmpBufferY, embedDim_);
// dst y calc
Mul(calcTmpBufferX, srcX, sin, embedDim_);
Mul(calcTmpBufferY, srcY, cos, embedDim_);
Add(dstY, calcTmpBufferX, calcTmpBufferY, embedDim_);
}
__aicore__ inline void compute_qk(AscendC::GlobalTensor<scalar_t> srcG, AscendC::GlobalTensor<dst_t> dstG,
local_acc_t localCos, local_acc_t localSin, local_acc_t upcastInputBuffer,
local_acc_t calcTmpBuffer, int loopCnt, int tailHeads, int loadStride,
int headNumPerLoad)
{
for (int loopNum = 0; loopNum < loopCnt; ++loopNum) {
local_scalar_t src = inQue_.AllocTensor<scalar_t>();
local_dst_t dst = outQue_.AllocTensor<dst_t>();
AscendC::DataCopy(src, srcG[loopNum * loadStride], loadStride);
inQue_.EnQue(src);
local_scalar_t srcDeque = inQue_.DeQue<scalar_t>();
if constexpr (!std::is_same_v<scalar_t, acc_t>) {
int elem_num = loadStride / sizeof(scalar_t);
AscendC::LocalTensor<acc_t> upBuffer = copyBuf_.GetWithOffset<acc_t>(elem_num, 0);
Cast(upBuffer, srcDeque, AscendC::RoundMode::CAST_TRUNC, elem_num);
Cast(dst, upBuffer, AscendC::RoundMode::CAST_TRUNC, elem_num);
} else {
local_mem_copy(dst, srcDeque, loadStride);
}
for (int i = 0; i < headNumPerLoad; ++i) {
neox_compute(srcDeque[i * headSize_], dst[i * headSize_], localSin, localCos, upcastInputBuffer,
calcTmpBuffer);
}
outQue_.EnQue(dst);
local_dst_t dstDeque = outQue_.DeQue<dst_t>();
AscendC::DataCopy(dstG[loopNum * loadStride], dstDeque, loadStride);
outQue_.FreeTensor(dstDeque);
inQue_.FreeTensor(srcDeque);
}
// process tail
{
local_scalar_t src = inQue_.AllocTensor<scalar_t>();
local_dst_t dst = outQue_.AllocTensor<dst_t>();
AscendC::DataCopy(src, srcG[loopCnt * loadStride], tailHeads * headSize_);
inQue_.EnQue(src);
local_scalar_t srcDeque = inQue_.DeQue<scalar_t>();
if constexpr (!std::is_same_v<scalar_t, acc_t>) {
int elem_num = tailHeads * headSize_ / sizeof(scalar_t);
AscendC::LocalTensor<acc_t> upBuffer = copyBuf_.GetWithOffset<acc_t>(elem_num, 0);
Cast(upBuffer, srcDeque, AscendC::RoundMode::CAST_TRUNC, elem_num);
Cast(dst, upBuffer, AscendC::RoundMode::CAST_TRUNC, elem_num);
} else {
local_mem_copy(dst, srcDeque, tailHeads * headSize_);
}
for (int i = 0; i < tailHeads; ++i) {
neox_compute(srcDeque[i * headSize_], dst[i * headSize_], localSin, localCos, upcastInputBuffer,
calcTmpBuffer);
}
outQue_.EnQue(dst);
local_dst_t dstDeque = outQue_.DeQue<dst_t>();
AscendC::DataCopy(dstG[loopCnt * loadStride], dstDeque, tailHeads * headSize_);
outQue_.FreeTensor(dstDeque);
inQue_.FreeTensor(srcDeque);
}
}
__aicore__ inline void compute_function()
{
local_scalar_t cosSinLocal = inQueSinCos_.AllocTensor<scalar_t>();
AscendC::DataCopy(cosSinLocal, cosSin_, embedDim_ * 2);
inQueSinCos_.EnQue(cosSinLocal);
local_scalar_t localSinCosDeque = inQueSinCos_.DeQue<scalar_t>();
local_scalar_t localCos = localSinCosDeque;
local_scalar_t localSin = localSinCosDeque[embedDim_];
local_acc_t calcTmpBuffer;
local_acc_t upcastInputBuffer;
local_acc_t upcastTempBuffer;
local_acc_t cosSinUpcastBuffer;
local_acc_t scaleBuffer;
local_acc_t offsetBuffer;
calcTmpBuffer = calcBuf_.GetWithOffset<acc_t>(embedDim_ * 2, calcTmpBufferOffset_);
upcastInputBuffer = calcBuf_.GetWithOffset<acc_t>(headSize_, upcastInputBufferOffset_);
upcastTempBuffer = calcBuf_.GetWithOffset<acc_t>(embedDim_ * 2, upcastTempBufferOffset_);
cosSinUpcastBuffer = calcBuf_.GetWithOffset<acc_t>(embedDim_ * 2, cosSinUpcastBufferOffset_);
local_acc_t cosAccBuffer;
local_acc_t sinAccBuffer;
if constexpr (!std::is_same_v<scalar_t, acc_t>) {
Cast(cosSinUpcastBuffer, localSinCosDeque, AscendC::RoundMode::CAST_NONE, 2 * embedDim_);
cosAccBuffer = cosSinUpcastBuffer;
sinAccBuffer = cosSinUpcastBuffer[embedDim_];
} else {
cosAccBuffer = localCos;
sinAccBuffer = localSin;
}
constexpr const int loadSizeByElem = loadSize / sizeof(scalar_t);
int64_t headNumPerLoad = loadSizeByElem / headSize_;
int64_t loopCnt = numHeads_ / headNumPerLoad;
int64_t tailHeads = numHeads_ - loopCnt * headNumPerLoad;
int64_t loadStride = headNumPerLoad * headSize_;
int64_t loopCntKv = numKvHeads_ / headNumPerLoad;
int64_t tailHeadsKv = numKvHeads_ - loopCntKv * headNumPerLoad;
compute_qk(query_, queryDst_, cosAccBuffer, sinAccBuffer, upcastInputBuffer,
calcTmpBuffer, loopCnt, tailHeads, loadStride, headNumPerLoad);
compute_qk(key_, keyDst_, cosAccBuffer, sinAccBuffer, upcastInputBuffer, calcTmpBuffer,
loopCntKv, tailHeadsKv, loadStride, headNumPerLoad);
inQueSinCos_.FreeTensor(localSinCosDeque);
}
private:
AscendC::TPipe *pipe_;
AscendC::TQue<AscendC::QuePosition::VECIN, 1> inQue_, inQueSinCos_;
AscendC::TQue<AscendC::QuePosition::VECOUT, 1> outQue_;
AscendC::TBuf<AscendC::TPosition::VECCALC> calcBuf_;
AscendC::TBuf<AscendC::TPosition::VECCALC> copyBuf_;
AscendC::GlobalTensor<dst_t> queryDst_;
AscendC::GlobalTensor<dst_t> keyDst_;
AscendC::GlobalTensor<scalar_t> query_;
AscendC::GlobalTensor<scalar_t> key_;
AscendC::GlobalTensor<scalar_t> cosSin_;
int rotDim_;
int embedDim_;
int64_t queryStride_;
int64_t keyStride_;
int64_t dstQueryStride_;
int64_t dstKeyStride_;
int numHeads_;
int numKvHeads_;
int headSize_;
int calcTmpBufferOffset_;
int upcastInputBufferOffset_;
int upcastTempBufferOffset_;
int cosSinUpcastBufferOffset_;
int tempBufferSize_;
};
// Note: Need to use macro to instaniate all the target functions here, for the current build system dose not support template call in cpp
// We use C style symbol here for kernel compilation, cpp style kernel entry may lead to compilation failure
#define ROPE_CUSTOM_KERNEL_TYPE_DECLARE(TYPE, NEOX) \
extern "C" __global__ __aicore__ void rope_custom_##NEOX##_##TYPE( \
__gm__ int64_t* positions, __gm__ void* queryDst, __gm__ void* keyDst, __gm__ TYPE* query, __gm__ TYPE* key, \
__gm__ TYPE* cosSinCache, const int rotDim, const int64_t queryStride, const int64_t keyStride, \
const int64_t dstQueryStride, const int64_t dstKeyStride, const int numHeads, const int numKvHeads, \
const int headSize, const int64_t numTokens, const int loopNum, const int coreNum) \
{ \
AscendC::TPipe pipe; \
RotaryEmbedding<TYPE, NEOX> op{}; \
op.init(positions, queryDst, keyDst, query, key, cosSinCache, rotDim, dstQueryStride, dstKeyStride, \
queryStride, keyStride, numHeads, numKvHeads, headSize, &pipe); \
for (int64_t i = AscendC::GetBlockIdx(); i < numTokens; i += coreNum) { \
op.update_mem_offset(positions, queryDst, keyDst, query, key, cosSinCache, rotDim, dstQueryStride, dstKeyStride, \
queryStride, keyStride, numHeads, numKvHeads, headSize, i); \
op.compute_function(); \
} \
}
#define ROPE_CUSTOM_KERNEL_DECLARE(TYPE) \
ROPE_CUSTOM_KERNEL_TYPE_DECLARE(TYPE, true); \
ROPE_CUSTOM_KERNEL_TYPE_DECLARE(TYPE, false);
// Declare all the kernel entry here
ROPE_CUSTOM_KERNEL_DECLARE(half)
#if (__CCE_AICORE__ >= 220)
ROPE_CUSTOM_KERNEL_DECLARE(bfloat16_t)
#endif
namespace vllm_ascend {
#define ROTARY_EMBEDDING_KERNEL_CALL(TYPE) \
if (isNeox) \
rope_custom_true_##TYPE<<<blockDim, nullptr, stream>>>( \
positions, queryDst, keyDst, reinterpret_cast<TYPE *>(query), reinterpret_cast<TYPE *>(key), \
reinterpret_cast<TYPE *>(cosSinCache), rotDim, queryStride, keyStride, dstQueryStride, dstKeyStride, \
numHeads, numKvHeads, headSize, numTokens, loopCnt, blockDim); \
else \
rope_custom_false_##TYPE<<<blockDim, nullptr, stream>>>( \
positions, queryDst, keyDst, reinterpret_cast<TYPE *>(query), reinterpret_cast<TYPE *>(key), \
reinterpret_cast<TYPE *>(cosSinCache), rotDim, queryStride, keyStride, dstQueryStride, dstKeyStride, \
numHeads, numKvHeads, headSize, numTokens, loopCnt, blockDim);
// maximum number for runtime to launch a ascendc kernel.
// we use this to constrain the maximum number of block size
static const int64_t maxParallelSize = 65535;
extern void rotary_embedding_impl(AscendType type, bool isNeox, void *stream, int64_t *positions, void *queryDst,
void *keyDst, void *query, void *key, void *cosSinCache, const int rotDim,
const int64_t queryStride, const int64_t keyStride, const int64_t dstQueryStride,
const int64_t dstKeyStride, const int numHeads, const int numKvHeads,
const int headSize, const int64_t numTokens, const uint32_t loopCnt,
uint32_t aivNum)
{
int blockDim = maxParallelSize > numTokens ? numTokens : maxParallelSize;
if (type == AscendType::FP16) {
ROTARY_EMBEDDING_KERNEL_CALL(half);
}
#if (__CCE_AICORE__ >= 220)
else if (type == AscendType::BF16) {
ROTARY_EMBEDDING_KERNEL_CALL(bfloat16_t);
}
#endif
else {
return;
}
}
} // namespace vllm_ascend