# # Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. # Copyright 2023 The vLLM team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is a part of the vllm-ascend project. # import argparse import gc import json import multiprocessing import sys import time from multiprocessing import Queue import lm_eval import torch # URLs for version information in Markdown report VLLM_URL = "https://github.com/vllm-project/vllm/commit/" VLLM_ASCEND_URL = "https://github.com/vllm-project/vllm-ascend/commit/" # Model and task configurations UNIMODAL_MODEL_NAME = ["Qwen/Qwen3-8B-Base", "Qwen/Qwen3-30B-A3B"] UNIMODAL_TASK = ["ceval-valid", "gsm8k"] MULTIMODAL_NAME = ["Qwen/Qwen2.5-VL-7B-Instruct"] MULTIMODAL_TASK = ["mmmu_val"] # Batch size configurations per task BATCH_SIZE = {"ceval-valid": 1, "mmlu": 1, "gsm8k": "auto", "mmmu_val": 1} # Model type mapping (vllm for text, vllm-vlm for vision-language) MODEL_TYPE = { "Qwen/Qwen3-8B-Base": "vllm", "Qwen/Qwen3-30B-A3B": "vllm", "Qwen/Qwen2.5-VL-7B-Instruct": "vllm-vlm", } # Command templates for running evaluations MODEL_RUN_INFO = { "Qwen/Qwen3-30B-A3B": ( "export MODEL_ARGS='pretrained={model},max_model_len=4096,dtype=auto,tensor_parallel_size=4,gpu_memory_utilization=0.6,enable_expert_parallel=True'\n" "lm_eval --model vllm --model_args $MODEL_ARGS --tasks {datasets} \ \n" "--apply_chat_template --fewshot_as_multiturn --num_fewshot 5 --batch_size 1" ), "Qwen/Qwen3-8B-Base": ( "export MODEL_ARGS='pretrained={model},max_model_len=4096,dtype=auto,tensor_parallel_size=2,gpu_memory_utilization=0.6'\n" "lm_eval --model vllm --model_args $MODEL_ARGS --tasks {datasets} \ \n" "--apply_chat_template --fewshot_as_multiturn --num_fewshot 5 --batch_size 1" ), "Qwen/Qwen2.5-VL-7B-Instruct": ( "export MODEL_ARGS='pretrained={model},max_model_len=8192,dtype=auto,tensor_parallel_size=2,max_images=2'\n" "lm_eval --model vllm-vlm --model_args $MODEL_ARGS --tasks {datasets} \ \n" "--apply_chat_template --fewshot_as_multiturn --batch_size 1" ), } # Evaluation metric filters per task FILTER = { "gsm8k": "exact_match,flexible-extract", "ceval-valid": "acc,none", "mmmu_val": "acc,none", } # Expected accuracy values for models EXPECTED_VALUE = { "Qwen/Qwen3-30B-A3B": {"ceval-valid": 0.83, "gsm8k": 0.85}, "Qwen/Qwen3-8B-Base": {"ceval-valid": 0.82, "gsm8k": 0.83}, "Qwen/Qwen2.5-VL-7B-Instruct": {"mmmu_val": 0.51}, } PARALLEL_MODE = { "Qwen/Qwen3-8B-Base": "TP", "Qwen/Qwen2.5-VL-7B-Instruct": "TP", "Qwen/Qwen3-30B-A3B": "EP", } # Execution backend configuration EXECUTION_MODE = { "Qwen/Qwen3-8B-Base": "ACLGraph", "Qwen/Qwen2.5-VL-7B-Instruct": "ACLGraph", "Qwen/Qwen3-30B-A3B": "ACLGraph", } # Model arguments for evaluation MODEL_ARGS = { "Qwen/Qwen3-8B-Base": "pretrained=Qwen/Qwen3-8B-Base,max_model_len=4096,dtype=auto,tensor_parallel_size=2,gpu_memory_utilization=0.6", "Qwen/Qwen2.5-VL-7B-Instruct": "pretrained=Qwen/Qwen2.5-VL-7B-Instruct,max_model_len=8192,dtype=auto,tensor_parallel_size=2,max_images=2", "Qwen/Qwen3-30B-A3B": "pretrained=Qwen/Qwen3-30B-A3B,max_model_len=4096,dtype=auto,tensor_parallel_size=4,gpu_memory_utilization=0.6,enable_expert_parallel=True", } # Whether to apply chat template formatting APPLY_CHAT_TEMPLATE = { "Qwen/Qwen3-8B-Base": True, "Qwen/Qwen2.5-VL-7B-Instruct": True, "Qwen/Qwen3-30B-A3B": False, } # Few-shot examples handling as multi-turn dialogues. FEWSHOT_AS_MULTITURN = { "Qwen/Qwen3-8B-Base": True, "Qwen/Qwen2.5-VL-7B-Instruct": True, "Qwen/Qwen3-30B-A3B": False, } # Relative tolerance for accuracy checks RTOL = 0.03 ACCURACY_FLAG = {} def run_accuracy_test(queue, model, dataset): """Run accuracy evaluation for a model on a dataset in separate process""" try: eval_params = { "model": MODEL_TYPE[model], "model_args": MODEL_ARGS[model], "tasks": dataset, "apply_chat_template": APPLY_CHAT_TEMPLATE[model], "fewshot_as_multiturn": FEWSHOT_AS_MULTITURN[model], "batch_size": BATCH_SIZE[dataset], } if MODEL_TYPE[model] == "vllm": eval_params["num_fewshot"] = 5 results = lm_eval.simple_evaluate(**eval_params) print(f"Success: {model} on {dataset} ") measured_value = results["results"] queue.put(measured_value) except Exception as e: print(f"Error in run_accuracy_test: {e}") queue.put(e) sys.exit(1) finally: if "results" in locals(): del results gc.collect() torch.npu.empty_cache() time.sleep(5) def generate_md(model_name, tasks_list, args, datasets): """Generate Markdown report with evaluation results""" # Format the run command run_cmd = MODEL_RUN_INFO[model_name].format(model=model_name, datasets=datasets) model = model_name.split("/")[1] # Version information section version_info = ( f"**vLLM Version**: vLLM: {args.vllm_version} " f"([{args.vllm_commit}]({VLLM_URL + args.vllm_commit})), " f"vLLM Ascend: {args.vllm_ascend_version} " f"([{args.vllm_ascend_commit}]({VLLM_ASCEND_URL + args.vllm_ascend_commit})) " ) # Report header with system info preamble = f"""# {model} {version_info} **Software Environment**: CANN: {args.cann_version}, PyTorch: {args.torch_version}, torch-npu: {args.torch_npu_version} **Hardware Environment**: Atlas A2 Series **Datasets**: {datasets} **vLLM Engine**: V{args.vllm_use_v1} **Parallel Mode**: {PARALLEL_MODE[model_name]} **Execution Mode**: {EXECUTION_MODE[model_name]} **Command**: ```bash {run_cmd} ``` """ header = ( "| Task | Filter | n-shot | Metric | Value | Stderr |\n" "|-----------------------|-------:|-------:|----------|--------:|-------:|" ) rows = [] rows_sub = [] # Process results for each task for task_dict in tasks_list: for key, stats in task_dict.items(): alias = stats.get("alias", key) task_name = alias.strip() if "exact_match,flexible-extract" in stats: metric_key = "exact_match,flexible-extract" else: metric_key = None for k in stats: if "," in k and not k.startswith("acc_stderr"): metric_key = k break if metric_key is None: continue metric, flt = metric_key.split(",", 1) value = stats[metric_key] stderr = stats.get(f"{metric}_stderr,{flt}", 0) if model_name in UNIMODAL_MODEL_NAME: n_shot = "5" else: n_shot = "0" flag = ACCURACY_FLAG.get(task_name, "") row = ( f"| {task_name:<37} " f"| {flt:<6} " f"| {n_shot:6} " f"| {metric:<6} " f"| {flag}{value:>5.4f} " f"| ± {stderr:>5.4f} |" ) if not task_name.startswith("-"): rows.append(row) rows_sub.append( "
" + "\n" + "" + task_name + " details" + "" + "\n" * 2 + header ) rows_sub.append(row) rows_sub.append("
") # Combine all Markdown sections md = ( preamble + "\n" + header + "\n" + "\n".join(rows) + "\n" + "\n".join(rows_sub) + "\n" ) print(md) return md def safe_md(args, accuracy, datasets): """ Safely generate and save Markdown report from accuracy results. """ data = json.loads(json.dumps(accuracy)) for model_key, tasks_list in data.items(): md_content = generate_md(model_key, tasks_list, args, datasets) with open(args.output, "w", encoding="utf-8") as f: f.write(md_content) print(f"create Markdown file:{args.output}") def main(args): """Main evaluation workflow""" accuracy = {} accuracy[args.model] = [] result_queue: Queue[float] = multiprocessing.Queue() if args.model in UNIMODAL_MODEL_NAME: datasets = UNIMODAL_TASK else: datasets = MULTIMODAL_TASK datasets_str = ",".join(datasets) # Evaluate model on each dataset for dataset in datasets: accuracy_expected = EXPECTED_VALUE[args.model][dataset] p = multiprocessing.Process( target=run_accuracy_test, args=(result_queue, args.model, dataset) ) p.start() p.join() if p.is_alive(): p.terminate() p.join() gc.collect() torch.npu.empty_cache() time.sleep(10) result = result_queue.get() print(result) if ( accuracy_expected - RTOL < result[dataset][FILTER[dataset]] < accuracy_expected + RTOL ): ACCURACY_FLAG[dataset] = "✅" else: ACCURACY_FLAG[dataset] = "❌" accuracy[args.model].append(result) print(accuracy) safe_md(args, accuracy, datasets_str) if __name__ == "__main__": multiprocessing.set_start_method("spawn", force=True) # Initialize argument parser parser = argparse.ArgumentParser( description="Run model accuracy evaluation and generate report" ) parser.add_argument("--output", type=str, required=True) parser.add_argument("--model", type=str, required=True) parser.add_argument("--vllm_ascend_version", type=str, required=False) parser.add_argument("--torch_version", type=str, required=False) parser.add_argument("--torch_npu_version", type=str, required=False) parser.add_argument("--vllm_version", type=str, required=False) parser.add_argument("--cann_version", type=str, required=False) parser.add_argument("--vllm_commit", type=str, required=False) parser.add_argument("--vllm_ascend_commit", type=str, required=False) parser.add_argument("--vllm_use_v1", type=str, required=False) args = parser.parse_args() main(args)