4 Commits

Author SHA1 Message Date
d9ee491f70 [BugFix]Move to_list in foward_v1 with FIA earlier to build (#3185)
### What this PR does / why we need it?
The current implementation of FIA will introduce an `to_list` operation
for actual_seq_lengths_q and seq_lens,which comsumes extra time. These
operation can be moved earlier into `build` operation of attention
metadata.

### Does this PR introduce _any_ user-facing change?

No.

### How was this patch tested?


- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

---------

Signed-off-by: Angazenn <supperccell@163.com>
2025-10-17 11:19:41 +08:00
30e3d86b0f Revert "[BUGFIX] Mtp torchair pd fix (#3449)" (#3500)
This reverts commit b0ae203e72d87985314d583e211dddca6f351958.

### What this PR does / why we need it?
The fix is not ready yet, conflict with #3411 need to revert first. Will
fix this issue later

### Does this PR introduce _any_ user-facing change?

### How was this patch tested?

Signed-off-by: xuyexiong <xuyexiong@huawei.com>
2025-10-17 09:42:48 +08:00
3a53bbc508 [Feat]Qwen3 Moe supports npu_add_rms_norm_quant op by default, update op with bias, resolve conflict with weight prefetch (#3465)
### What this PR does / why we need it?
1.qwen3 moe uses add_rms_norm_quant op instead of 'add_rms_norm op and
quant op' during quantization scene.
2.torch_npu.add_rms_norm_quant op fixed accuracy while model weights is
quantized by anti_method m4, m4 quantization is asymmetric outlier
suppression method, it will generate none-zero norm bias,
add_rms_norm_quant op updated to add this parameter to calculate.
3. add torch-npu check

### Does this PR introduce _any_ user-facing change?
new feature works if torch_npu version >= torch_npu-2.7.1.dev20250919

### How was this patch tested?
1.no special parameters to set, no new envs to set. new feature works if
torch_npu version >= torch_npu-2.7.1.dev20250919
2.use qwen3 moe quantization model to test ,such as
Qwen3-235B-A22B-W8A8, Qwen3-30B-A3B-W8A8,
Qwen3-235B-A22B-Instruct-2507-m4 (anti_method m4)

- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

---------

Signed-off-by: h30027576 <huangdong51@huawei.com>
2025-10-17 09:30:51 +08:00
4c4a8458a5 [CI] Refator multi-node CI (#3487)
### What this PR does / why we need it?
Refactor the multi-machine CI use case. The purpose of this PR is to
increase the ease of adding multi-machine CI use cases, allowing
developers to add multi-machine cluster model testing use cases
(including PD separation) by simply adding a new YAML configuration
file.
### Does this PR introduce _any_ user-facing change?

### How was this patch tested?

- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

---------

Signed-off-by: wangli <wangli858794774@gmail.com>
2025-10-17 09:04:31 +08:00
28 changed files with 767 additions and 502 deletions

View File

@ -102,6 +102,15 @@ jobs:
wait $LOG_PID || true
kill $MONITOR_PID || true
- name: Generate summary
if: always()
run: |
if [ -f "/root/.cache/test_summary.md" ]; then
cat /root/.cache/test_summary.md >> "$GITHUB_STEP_SUMMARY"
else
echo "No summary file found." >> "$GITHUB_STEP_SUMMARY"
fi
- name: Post process
if: always()
run: |

View File

@ -66,16 +66,16 @@ Install the relevant dependencies. The installation of Go is not required.
```shell
cd Mooncake
bash dependencies.sh
bash dependencies.sh -y
```
Install mpi
```shell
apt purge mpich libmpich-dev
apt purge openmpi-bin
apt purge openmpi-bin libopenmpi-dev
apt install mpich libmpich-dev
apt purge mpich libmpich-dev -y
apt purge openmpi-bin -y
apt purge openmpi-bin libopenmpi-dev -y
apt install mpich libmpich-dev -y
export CPATH=/usr/lib/aarch64-linux-gnu/mpich/include/:$CPATH
export CPATH=/usr/lib/aarch64-linux-gnu/openmpi/lib:$CPATH
```

View File

@ -205,7 +205,7 @@ vllm serve /models/deepseek_r1_w8a8 \
Run proxy server on the first node:
```shell
cd /vllm-workspace/vllm-ascend/examples/disaggregated_prefill_v1
python toy_proxy_server.py --host 172.19.32.175 --port 1025 --prefiller-hosts 172.19.241.49 --prefiller-port 20002 --decoder-hosts 172.19.123.51 --decoder-ports 20002
python load_balance_proxy_server_example.py --host 172.19.32.175 --port 1025 --prefiller-hosts 172.19.241.49 --prefiller-port 20002 --decoder-hosts 172.19.123.51 --decoder-ports 20002
```
Verification

View File

@ -21,6 +21,10 @@ parser.add_argument("--local-device-ids",
type=str,
required=False,
help="local device ids")
parser.add_argument("--ranktable-path",
type=str,
default="./ranktable.json",
help="output rank table path")
args = parser.parse_args()
local_host = args.local_host
prefill_device_cnt = args.prefill_device_cnt
@ -130,7 +134,8 @@ ranktable = {
}
if local_rank == '0':
with open("ranktable.json", "w") as f:
os.makedirs(os.path.dirname(args.ranktable_path), exist_ok=True)
with open(args.ranktable_path, "w") as f:
json.dump(ranktable, f, indent=4)
print("gen ranktable.json done")

View File

@ -21,6 +21,7 @@ import contextlib
import gc
import json
import os
import shlex
import subprocess
import sys
import time
@ -40,14 +41,11 @@ from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
from transformers.models.auto.auto_factory import _BaseAutoModelClass
from vllm import LLM, SamplingParams
from vllm.config.model import TaskOption, _get_and_verify_dtype
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.entrypoints.cli.serve import ServeSubcommand
from vllm.inputs import TextPrompt
from vllm.model_executor.model_loader import get_model_loader
from vllm.outputs import RequestOutput
from vllm.platforms import current_platform
from vllm.transformers_utils.utils import maybe_model_redirect
from vllm.utils import FlexibleArgumentParser, get_open_port
from vllm.utils import get_open_port
from tests.e2e.model_utils import (TokensTextLogprobs,
TokensTextLogprobsPromptLogprobs)
@ -91,7 +89,7 @@ def cleanup_dist_env_and_memory(shutdown_ray: bool = False):
class RemoteOpenAIServer:
DUMMY_API_KEY = "token-abc123" # vLLM's OpenAI server does not need API key
def _start_server(self, model: str, vllm_serve_args: list[str],
def _start_server(self, model: str, server_cmd: list[str],
env_dict: Optional[dict[str, str]]) -> None:
"""Subclasses override this method to customize server process launch
"""
@ -102,7 +100,7 @@ class RemoteOpenAIServer:
if env_dict is not None:
env.update(env_dict)
self.proc: subprocess.Popen = subprocess.Popen(
["vllm", "serve", model, *vllm_serve_args],
server_cmd,
env=env,
stdout=sys.stdout,
stderr=sys.stderr,
@ -110,15 +108,19 @@ class RemoteOpenAIServer:
def __init__(self,
model: str,
vllm_serve_args: list[str],
vllm_serve_args: Union[list[str], str],
*,
server_host: str = "0.0.0.0",
server_port: int = 8080,
env_dict: Optional[dict[str, str]] = None,
seed: Optional[int] = 0,
seed: Optional[int] = None,
auto_port: bool = True,
max_wait_seconds: Optional[float] = None,
override_hf_configs: Optional[dict[str, Any]] = None) -> None:
if isinstance(vllm_serve_args, str):
vllm_serve_args = shlex.split(vllm_serve_args)
else:
vllm_serve_args = ["vllm", "serve", model, *vllm_serve_args]
if auto_port:
if "-p" in vllm_serve_args or "--port" in vllm_serve_args:
raise ValueError("You have manually specified the port "
@ -142,32 +144,8 @@ class RemoteOpenAIServer:
"--hf-overrides",
json.dumps(override_hf_configs)
]
parser = FlexibleArgumentParser(
description="vLLM's remote OpenAI server.")
subparsers = parser.add_subparsers(required=False, dest="subparser")
parser = ServeSubcommand().subparser_init(subparsers)
args = parser.parse_args([*vllm_serve_args])
self.uds = args.uds
if args.uds:
self.host = None
self.port = None
else:
self.host = str(server_host)
self.port = int(server_port)
self.show_hidden_metrics = \
args.show_hidden_metrics_for_version is not None
# download the model before starting the server to avoid timeout
is_local = os.path.isdir(model)
if not is_local:
engine_args = AsyncEngineArgs.from_cli_args(args)
model_config = engine_args.create_model_config()
load_config = engine_args.create_load_config()
model_loader = get_model_loader(load_config)
model_loader.download_model(model_config)
self.host = str(server_host)
self.port = int(server_port)
self._start_server(model, vllm_serve_args, env_dict)
max_wait_seconds = max_wait_seconds or 7200
@ -195,11 +173,7 @@ class RemoteOpenAIServer:
This is for headless mode, where the api server
process only exists in the leader node.
"""
if self.uds:
client = httpx.Client(transport=httpx.HTTPTransport(uds=self.uds))
else:
client = requests
client = requests
try:
while True:
try:
@ -216,8 +190,7 @@ class RemoteOpenAIServer:
def _wait_for_server(self, *, url: str, timeout: float):
# run health check
start = time.time()
client = (httpx.Client(transport=httpx.HTTPTransport(
uds=self.uds)) if self.uds else requests)
client = requests
while True:
try:
if client.get(url).status_code == 200:
@ -231,15 +204,14 @@ class RemoteOpenAIServer:
if result is not None and result != 0:
raise RuntimeError("Server exited unexpectedly.") from None
time.sleep(1)
time.sleep(5)
if time.time() - start > timeout:
raise RuntimeError(
"Server failed to start in time.") from None
@property
def url_root(self) -> str:
return (f"http://{self.uds.split('/')[-1]}"
if self.uds else f"http://{self.host}:{self.port}")
return f"http://{self.host}:{self.port}"
def url_for(self, *parts: str) -> str:
return self.url_root + "/" + "/".join(parts)

View File

@ -1,43 +0,0 @@
[
{
"test_name": "test_deepseek_v3",
"disaggregate_prefill": false,
"enable_multithread_load": false,
"num_nodes": 2,
"server_parameters": {
"leader_config": {
"model": "vllm-ascend/DeepSeek-V3-W8A8",
"quantization": "ascend",
"additional_config": {
"ascend_scheduler_config": {
"enabled": true
},
"torchair_graph_config": {
"enabled": true
}
}
},
"worker_config": {
"model": "vllm-ascend/DeepSeek-V3-W8A8",
"quantization": "ascend",
"additional_config": {
"ascend_scheduler_config": {
"enabled": true
},
"torchair_graph_config": {
"enabled": true
}
}
}
},
"client_parameters": {
"model": "vllm-ascend/DeepSeek-V3-W8A8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "/root/.cache/datasets/ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"request_rate": 1
},
"accuracy_parameters": {}
}
]

View File

@ -1,204 +0,0 @@
import json
import logging
import os
from dataclasses import dataclass, field, fields
from pathlib import Path
from typing import Any, Dict, List, Optional, Type, TypeVar, Union
from tests.e2e.multi_node.config.utils import (get_avaliable_port,
get_leader_ip,
get_net_interface)
LOG = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
CONFIG_PATH = Path("tests/e2e/multi_node/config/config.json")
T = TypeVar("T", bound="BaseConfig")
# =========================
# Base Config
# =========================
@dataclass
class BaseConfig:
model: str = "vllm-ascend/DeepSeek-V3-W8A8"
_extra_fields: Optional[Dict[str, Any]] = None
@classmethod
def from_config(cls: Type[T], data: dict[str, Any]) -> T:
"""Create config instance from dict, keeping unknown fields."""
field_names = {f.name for f in fields(cls)}
valid_fields = {k: v for k, v in data.items() if k in field_names}
extra_fields = {k: v for k, v in data.items() if k not in field_names}
obj = cls(**valid_fields)
obj._extra_fields = extra_fields or {}
return obj
def to_list(self) -> List[str]:
"""Convert all fields (including _extra_fields) to CLI arguments."""
args: List[str] = []
all_items = {**vars(self), **(self._extra_fields or {})}
for key, value in all_items.items():
if key in ("model", "_extra_fields") or value in (None, "", [],
{}):
continue
key = key.replace("_", "-")
if isinstance(value, bool):
if value:
args.append(f"--{key}")
elif isinstance(value, dict):
args += [f"--{key}", json.dumps(value, ensure_ascii=False)]
else:
args += [f"--{key}", str(value)]
return args
# =========================
# Server Config
# =========================
@dataclass
class ServerConfig(BaseConfig):
host: str = "0.0.0.0"
port: int = 8080
trust_remote_code: bool = True
enable_expert_parallel: bool = True
gpu_memory_utilization: float = 0.9
headless: bool = False
quantization: Optional[str] = None
tensor_parallel_size: int = 8
max_model_len: int = 8192
max_num_batched_token: int = 8192
data_parallel_size: int = 4
data_parallel_size_local: int = 2
data_parallel_start_rank: int = 0
data_parallel_rpc_port: int = 13389
data_parallel_address: Optional[str] = None
kv_transfer_config: Optional[Dict[str, Any]] = None
additional_config: Optional[Dict[str, Any]] = None
def init_dp_param(
self,
is_leader: bool,
is_disaggregate_prefill: bool,
dp_size: int,
world_size: int,
) -> None:
"""Initialize distributed parallel parameters."""
iface = get_net_interface()
if iface is None:
raise RuntimeError("No available network interface found")
self.data_parallel_address = iface[0]
if is_disaggregate_prefill:
self.data_parallel_start_rank = 0
return
if not is_leader:
self.headless = True
self.data_parallel_start_rank = dp_size // world_size
self.data_parallel_address = get_leader_ip()
@dataclass
class PerfConfig(BaseConfig):
pass
@dataclass
class AccuracyConfig:
prompt: str
expected_output: str
# =========================
# MultiNode Config
# =========================
@dataclass
class MultiNodeConfig:
test_name: str = "Unnamed Test"
disaggregate_prefill: bool = False
enable_multithread_load: bool = True
world_size: int = 2
server_host: str = "0.0.0.0"
server_port: int = 8888
server_config: ServerConfig = field(default_factory=ServerConfig)
perf_config: Optional[PerfConfig] = None
accuracy_config: Optional[AccuracyConfig] = None
@classmethod
def from_config(cls, cfg: Dict[str, Any]) -> "MultiNodeConfig":
"""Create a MultiNodeConfig from raw dict."""
num_nodes = cfg.get("num_nodes", 2)
is_disaggregate_prefill = cfg.get("disaggregate_prefill", False)
node_index = int(os.getenv("LWS_WORKER_INDEX", 0))
is_leader = node_index == 0
# server config
server_cfg_data = cfg.get("server_parameters", {})
if not server_cfg_data:
raise ValueError("Missing required key: 'server_parameters'")
role_key = "leader_config" if is_leader else "worker_config"
server_cfg_dict = server_cfg_data.get(role_key, {})
server_cfg: ServerConfig = ServerConfig.from_config(server_cfg_dict)
if cfg.get("enable_multithread_load"):
server_cfg.model_loader_extra_config = { # type: ignore[attr-defined]
"enable_multithread_load": True,
"num_threads": 8,
}
# distributed param init
server_cfg.init_dp_param(
is_leader=is_leader,
is_disaggregate_prefill=is_disaggregate_prefill,
dp_size=server_cfg.data_parallel_size,
world_size=num_nodes,
)
perf_cfg: Optional[PerfConfig] = (PerfConfig.from_config(
cfg.get("client_parameters", {})) if cfg.get("client_parameters")
else None)
# network info
leader_cfg = server_cfg_data.get("leader_config", {})
server_host = get_leader_ip()
server_port = (get_avaliable_port() if is_disaggregate_prefill else
leader_cfg.get("port", 8080))
return cls(
test_name=str(cfg.get("test_name", "Unnamed Test")),
disaggregate_prefill=is_disaggregate_prefill,
enable_multithread_load=cfg.get("enable_multithread_load", False),
world_size=num_nodes,
server_config=server_cfg,
perf_config=perf_cfg,
server_host=server_host,
server_port=server_port,
)
# =========================
# Loader
# =========================
def load_configs(
path: Union[str, Path] = CONFIG_PATH) -> List[MultiNodeConfig]:
"""Load one or multiple configs from JSON file."""
path = Path(path)
if not path.exists():
raise FileNotFoundError(f"Configuration file not found: {path}")
raw = json.loads(path.read_text())
configs_data = raw if isinstance(raw, list) else [raw]
configs = []
for idx, item in enumerate(configs_data):
try:
configs.append(MultiNodeConfig.from_config(item))
except Exception as e:
LOG.exception(f"Failed to parse config #{idx}: {e}")
raise
return configs

View File

@ -1,68 +0,0 @@
import os
import socket
import subprocess
from typing import Optional, Tuple
import psutil
def get_leader_ip():
leader_dns = os.getenv("LWS_LEADER_ADDRESS")
assert leader_dns is not None, "cannot find leader address"
return socket.gethostbyname(leader_dns)
def get_avaliable_port(start_port: int = 6000, end_port: int = 7000) -> int:
import socket
for port in range(start_port, end_port):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
try:
s.bind(("", port))
return port
except OSError:
continue
raise RuntimeError("No available port found")
def get_net_interface(ip: Optional[str] = None) -> Optional[Tuple[str, str]]:
"""
Returns specified IP and its network interface.
If no IP is provided, uses the first from hostname -I.
"""
if ip is None:
ips = subprocess.check_output(["hostname",
"-I"]).decode().strip().split()
if not ips:
return None
ip = ips[0]
for iface, addrs in psutil.net_if_addrs().items():
for addr in addrs:
if addr.family == socket.AF_INET and addr.address == ip:
return ip, iface
return None
def get_default_envs() -> dict[str, str]:
"""Returns default network and system environment variables."""
result = get_net_interface()
if result is None:
raise RuntimeError("Failed to get default network IP and interface")
ip, nic_name = result
return {
"HCCL_IF_IP": ip,
"GLOO_SOCKET_IFNAME": nic_name,
"TP_SOCKET_IFNAME": nic_name,
"HCCL_SOCKET_IFNAME": nic_name,
"OMP_PROC_BIND": "false",
"OMP_NUM_THREADS": "100",
"VLLM_USE_V1": "1",
"HCCL_BUFFSIZE": "1024",
"VLLM_USE_MODELSCOPE": "true",
"NUMEXPR_MAX_THREADS": "100",
}
def generate_ranktable():
pass

View File

@ -1,49 +0,0 @@
import subprocess
import pytest
from tests.e2e.conftest import RemoteOpenAIServer
from tests.e2e.multi_node.config.multi_node_config import (MultiNodeConfig,
load_configs)
from tests.e2e.multi_node.config.utils import get_default_envs
configs = load_configs()
def get_benchmark_cmd(model: str, base_url: str, args: list[str]):
"""vllm bench serve <model> --base-url <url> ..."""
return [
"vllm", "bench", "serve", "--model", model, "--base-url", base_url
] + args
@pytest.mark.parametrize("config", configs)
def test_multi_dp(config: MultiNodeConfig) -> None:
env_dict = get_default_envs()
server_config = config.server_config
perf_config = config.perf_config
model_name = server_config.model
assert model_name is not None, "Model name must be specified"
server_args = server_config.to_list()
with RemoteOpenAIServer(
model_name,
server_args,
server_host=config.server_host,
server_port=config.server_port,
env_dict=env_dict,
auto_port=False,
seed=1024,
max_wait_seconds=1000,
) as remote_server:
base_url = remote_server.url_root
assert perf_config is not None, "Perf config must be specified for perf tests"
perf_cmd = get_benchmark_cmd(server_config.model, base_url,
perf_config.to_list())
if server_config.headless:
remote_server.hang_until_terminated()
else:
# run perf benchmark
subprocess.run(perf_cmd, check=True)

View File

@ -0,0 +1,126 @@
# For disaggregated mode, set is_disaggregated: true, and set the following parameters:
# Prefiller_index: the hosts index of the node running prefiller
# Decoder_index: the hosts index of the node running decoder
# Suppose we have **4 nodes** running a 2P1D setup (2 Prefillers + 1 Decoder):
# ┌───────────────┬───────────────┬───────────────┬───────────────┐
# │ node0 │ node1 │ node2 │ node3 │
# │ Prefiller #1 │ Prefiller #2 │ Decoder │ Decoder │
# └───────────────┴───────────────┴───────────────┴───────────────┘
# For the prefiller nodes. the hosts should be node0 and node1
# For the decoder nodes. we only have 1 decoder node(dp+tp+ep across node2 and node3. Where node3 is running with headless mode)
# So the prefiller_host_index is [0, 1], and the decoder_host_index is [2]
test_name: "test DeepSeek-V3 disaggregated_prefill"
model: "vllm-ascend/DeepSeek-V3-W8A8"
num_nodes: 2
npu_per_node: 16
env_common:
VLLM_USE_MODELSCOPE: true
OMP_PROC_BIND: false
OMP_NUM_THREADS: 100
HCCL_BUFFSIZE: 1024
SERVER_PORT: 8080
disaggregated_prefill:
enabled: true
prefiller_host_index: [0]
decoder_host_index: [1]
deployment:
-
local_index: 0
master_index: 0
headless: false
env_extend:
server_cmd: >
vllm serve "vllm-ascend/DeepSeek-V3-W8A8"
--host 0.0.0.0
--port $SERVER_PORT
--data-parallel-size 2
--data-parallel-size-local 2
--tensor-parallel-size 8
--seed 1024
--enforce-eager
--enable-expert-parallel
--max-num-seqs 16
--max-model-len 8192
--max-num-batched-tokens 8192
--quantization ascend
--trust-remote-code
--no-enable-prefix-caching
--gpu-memory-utilization 0.9
--kv-transfer-config
'{"kv_connector": "MooncakeConnector",
"kv_role": "kv_producer",
"kv_port": "30000",
"engine_id": "0",
"kv_connector_module_path": "vllm_ascend.distributed.mooncake_connector",
"kv_connector_extra_config": {
"prefill": {
"dp_size": 2,
"tp_size": 8
},
"decode": {
"dp_size": 2,
"tp_size": 8
}
}
}'
-
local_index: 1
master_index: 0
headless: true
env_extend:
server_cmd: >
vllm serve "vllm-ascend/DeepSeek-V3-W8A8"
--host 0.0.0.0
--port $SERVER_PORT
--data-parallel-size 2
--data-parallel-size-local 2
--tensor-parallel-size 8
--seed 1024
--quantization ascend
--max-num-seqs 16
--max-model-len 8192
--max-num-batched-tokens 8192
--enable-expert-parallel
--trust-remote-code
--no-enable-prefix-caching
--gpu-memory-utilization 0.9
--additional-config '{"torchair_graph_config":{"enabled":true}}'
--kv-transfer-config
'{"kv_connector": "MooncakeConnector",
"kv_role": "kv_consumer",
"kv_port": "30200",
"engine_id": "1",
"kv_connector_module_path": "vllm_ascend.distributed.mooncake_connector",
"kv_connector_extra_config": {
"prefill": {
"dp_size": 2,
"tp_size": 8
},
"decode": {
"dp_size": 2,
"tp_size": 8
}
}
}'
benchmarks:
perf:
case_type: performance
dataset_path: vllm-ascend/GSM8K-in3500-bs400
request_conf: vllm_api_stream_chat
dataset_conf: gsm8k/gsm8k_gen_0_shot_cot_str_perf
num_prompts: 1
max_out_len: 2
batch_size: 1
baseline: 5
threshold: 0.97
acc:
case_type: accuracy
dataset_path: vllm-ascend/AIME2024
request_conf: vllm_api_general_chat
dataset_conf: aime2024/aime2024_gen_0_shot_chat_prompt
max_out_len: 10
batch_size: 32
baseline: 1
threshold: 1

View File

@ -0,0 +1,76 @@
test_name: "test Qwen3-235B-A22B multi-dp"
model: "Qwen/Qwen3-235B-A22B"
num_nodes: 2
npu_per_node: 16
env_common:
VLLM_USE_MODELSCOPE: true
OMP_PROC_BIND: false
OMP_NUM_THREADS: 100
HCCL_BUFFSIZE: 1024
SERVER_PORT: 8080
deployment:
-
local_index: 0
master_index: 0
headless: false
env_extend:
server_cmd: >
vllm serve "Qwen/Qwen3-235B-A22B"
--host 0.0.0.0
--port $SERVER_PORT
--data-parallel-size 4
--data-parallel-size-local 2
--data-parallel-address $LOCAL_IP
--data-parallel-rpc-port 13389
--tensor-parallel-size 8
--seed 1024
--enable-expert-parallel
--max-num-seqs 16
--max-model-len 8192
--max-num-batched-tokens 8192
--trust-remote-code
--no-enable-prefix-caching
--gpu-memory-utilization 0.9
-
local_index: 1
master_index: 0
headless: true
env_extend:
server_cmd: >
vllm serve "Qwen/Qwen3-235B-A22B"
--headless
--data-parallel-size 4
--data-parallel-size-local 2
--data-parallel-start-rank 2
--data-parallel-address $MASTER_IP
--data-parallel-rpc-port 13389
--tensor-parallel-size 8
--seed 1024
--max-num-seqs 16
--max-model-len 8192
--max-num-batched-tokens 8192
--enable-expert-parallel
--trust-remote-code
--no-enable-prefix-caching
--gpu-memory-utilization 0.9
benchmarks:
perf:
case_type: performance
dataset_path: vllm-ascend/GSM8K-in3500-bs400
request_conf: vllm_api_stream_chat
dataset_conf: gsm8k/gsm8k_gen_0_shot_cot_str_perf
num_prompts: 1
max_out_len: 2
batch_size: 1
baseline: 5
threshold: 0.97
acc:
case_type: accuracy
dataset_path: vllm-ascend/AIME2024
request_conf: vllm_api_general_chat
dataset_conf: aime2024/aime2024_gen_0_shot_chat_prompt
max_out_len: 10
batch_size: 32
baseline: 1
threshold: 1

View File

@ -0,0 +1,207 @@
import logging
import os
import subprocess
from typing import Optional
import regex as re
import yaml
from tests.e2e.nightly.multi_node.config.utils import (get_avaliable_port,
get_cluster_ips,
get_cur_ip,
get_net_interface,
setup_logger)
setup_logger()
logger = logging.getLogger(__name__)
DISAGGREGATED_PREFILL_PROXY_SCRIPT = "examples/disaggregated_prefill_v1/load_balance_proxy_layerwise_server_example.py"
class MultiNodeConfig:
def __init__(self,
model: str,
test_name: str,
num_nodes: int = 2,
npu_per_node: int = 16,
server_port: int = 8080,
headless: bool = False,
disaggregated_prefill: Optional[dict] = None,
envs: Optional[dict] = None,
server_cmd: str = "",
perf_cmd: Optional[str] = None,
acc_cmd: Optional[str] = None):
self.test_name = test_name
self.model = model
self.num_nodes = num_nodes
self.npu_per_node = npu_per_node
self.envs = envs if envs is not None else {}
self.server_port = server_port
if disaggregated_prefill:
self.proxy_port = get_avaliable_port()
self.headless = headless
self.server_cmd = server_cmd
self.perf_cmd = perf_cmd
self.acc_cmd = acc_cmd
assert perf_cmd is not None, "perf_cmd must be provided"
assert acc_cmd is not None, "acc_cmd must be provided"
assert server_cmd is not None, "server_cmd must be provided"
self.cur_index = os.getenv("LWS_WORKER_INDEX", 0)
self.cur_ip = get_cur_ip()
self.nic_name = get_net_interface(self.cur_ip)
self.cluster_ips = get_cluster_ips(num_nodes)
self.disaggregated_prefill = disaggregated_prefill
self._init_dist_env()
self.server_cmd = self._expand_env_vars(self.server_cmd, self.envs)
def _init_dist_env(self):
self.envs["HCCL_IF_IP"] = self.cur_ip
self.envs["GLOO_SOCKET_IFNAME"] = self.nic_name
self.envs["TP_SOCKET_IFNAME"] = self.nic_name
self.envs["HCCL_SOCKET_IFNAME"] = self.nic_name
self.envs["LOCAL_IP"] = self.cur_ip
self.envs["NIC_NAME"] = self.nic_name
self.envs["MASTER_IP"] = self.cluster_ips[0]
ascend_path = "/usr/local/Ascend/ascend-toolkit/latest/python/site-packages"
self.envs[
"LD_LIBRARY_PATH"] = f"{ascend_path}:{self.envs.get('LD_LIBRARY_PATH', os.environ.get('LD_LIBRARY_PATH', ''))}"
# keep the envs keys and values as strings
str_envs = {k: str(v) for k, v in self.envs.items()}
self.envs.clear()
self.envs.update(str_envs)
@staticmethod
def _expand_env_vars(cmd: str, env: dict) -> str:
"""Expand environment variables in the command string."""
cmd = str(cmd)
pattern = re.compile(r"\$(\w+)|\$\{(\w+)\}")
def replace_var(match):
var_name = match.group(1) or match.group(2)
return str(env.get(var_name, match.group(0)))
return pattern.sub(replace_var, cmd)
class _ProxyContext:
def __init__(self, outer, proxy_script):
self.outer = outer
self.proxy_script = proxy_script
self.process = None
def __enter__(self):
o = self.outer
if not o.disaggregated_prefill or not o.is_master:
logger.info(
"Disaggregated prefill not enabled or not master node, skipping proxy launch."
)
return self
prefiller_indices = o.disaggregated_prefill["prefiller_host_index"]
decoder_indices = o.disaggregated_prefill["decoder_host_index"]
common_indices = set(prefiller_indices) & set(decoder_indices)
assert not common_indices, f"Common indices found: {common_indices}"
assert o.proxy_port is not None, "proxy_port must be set"
prefiller_ips = [o.cluster_ips[i] for i in prefiller_indices]
decoder_ips = [o.cluster_ips[i] for i in decoder_indices]
prefiller_ports_list = [str(o.server_port)] * len(prefiller_ips)
decoder_ports_list = [str(o.server_port)] * len(decoder_ips)
proxy_cmd = [
"python",
self.proxy_script,
"--host",
o.cur_ip,
"--port",
str(o.proxy_port),
"--prefiller-hosts",
*prefiller_ips,
"--prefiller-ports",
*prefiller_ports_list,
"--decoder-hosts",
*decoder_ips,
"--decoder-ports",
*decoder_ports_list,
]
env = os.environ.copy()
env.update(o.envs)
logger.info(f"Launching proxy: {' '.join(proxy_cmd)}")
self.process = subprocess.Popen(proxy_cmd, env=env)
o.proxy_process = self.process
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if self.process:
logger.info("Terminating proxy server process...")
try:
self.process.terminate()
self.process.wait(timeout=5)
except subprocess.TimeoutExpired:
logger.warning(
"Proxy process did not terminate, killing it...")
self.process.kill()
logger.info("Proxy server process terminated.")
def launch_server_proxy(self, proxy_script: str):
"""Return a context manager that launches the proxy server if disaggregated prefill is enabled."""
return self._ProxyContext(self, proxy_script)
@classmethod
def from_yaml(cls, yaml_path: Optional[str] = None):
if not yaml_path:
yaml_path = os.getenv(
"CONFIG_YAML_PATH",
"tests/e2e/nightly/multi_node/config/models/DeepSeek-V3.yaml")
with open(yaml_path, 'r') as file:
config_data = yaml.safe_load(file)
test_name = config_data.get("test_name", "default_test")
model = config_data.get("model", "default_model")
envs = config_data.get("env_common", {})
num_nodes = config_data.get("num_nodes", 2)
npu_per_node = config_data.get("npu_per_node", 16)
disaggregated_prefill = config_data.get("disaggregated_prefill")
# If disaggregated_prefill is set, override server_port to an available port for proxy running
server_port = config_data.get("server_port", 8080)
deployments = config_data.get("deployment", [])
assert len(deployments) == num_nodes, \
f"Number of deployments ({len(deployments)}) must match num_nodes ({num_nodes})"
for deployment in deployments:
if deployment.get("local_index") == int(
os.getenv("LWS_WORKER_INDEX", 0)):
envs_extend = deployment.get("env_extend", {})
if envs_extend:
envs.update(envs_extend)
server_cmd = deployment.get("server_cmd")
headless = deployment.get("headless", False)
break
benchmarks = config_data.get("benchmarks", {})
assert benchmarks is not None, "benchmarks must be provided"
perf_cmd = benchmarks["perf"]
acc_cmd = benchmarks["acc"]
return cls(model=model,
test_name=test_name,
num_nodes=num_nodes,
npu_per_node=npu_per_node,
envs=envs,
server_port=server_port,
headless=headless,
disaggregated_prefill=disaggregated_prefill,
server_cmd=server_cmd,
perf_cmd=perf_cmd,
acc_cmd=acc_cmd)
@property
def world_size(self):
return self.num_nodes * self.npu_per_node
@property
def is_master(self):
return int(self.cur_index) == 0

View File

@ -0,0 +1,95 @@
import logging
import os
import socket
from contextlib import contextmanager
from typing import Optional
import psutil
# import torch.distributed as dist
@contextmanager
def temp_env(env_dict):
old_env = {}
for k, v in env_dict.items():
old_env[k] = os.environ.get(k)
os.environ[k] = str(v)
try:
yield
finally:
for k, v in old_env.items():
if v is None:
os.environ.pop(k, None)
else:
os.environ[k] = v
# @contextmanager
# def dist_group(backend="gloo"):
# if dist.is_initialized():
# yield
# return
# dist.init_process_group(backend=backend)
# try:
# yield
# finally:
# dist.destroy_process_group()
def get_cluster_ips(word_size: int = 2) -> list[str]:
"""
Returns the IP addresses of all nodes in the cluster.
0: leader
1~N-1: workers
"""
leader_dns = os.getenv("LWS_LEADER_ADDRESS")
if not leader_dns:
raise RuntimeError("LWS_LEADER_ADDRESS is not set")
cluster_dns = [leader_dns]
for i in range(1, word_size):
cur_dns = f"vllm-0-{i}.vllm.vllm-project"
cluster_dns.append(cur_dns)
return [socket.gethostbyname(dns) for dns in cluster_dns]
def get_avaliable_port(start_port: int = 6000, end_port: int = 7000) -> int:
import socket
for port in range(start_port, end_port):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
try:
s.bind(("", port))
return port
except OSError:
continue
raise RuntimeError("No available port found")
def get_cur_ip() -> str:
"""Returns the current machine's IP address."""
return socket.gethostbyname_ex(socket.gethostname())[2][0]
def get_net_interface(ip: Optional[str] = None) -> Optional[str]:
"""
Returns specified IP's inetwork interface.
If no IP is provided, uses the first from hostname -I.
"""
if ip is None:
ip = get_cur_ip()
for iface, addrs in psutil.net_if_addrs().items():
for addr in addrs:
if addr.family == socket.AF_INET and addr.address == ip:
return iface
return None
def setup_logger():
"""Setup logging configuration."""
logging.basicConfig(
level=logging.INFO,
format="[%(asctime)s] [%(levelname)s] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)

View File

@ -17,14 +17,8 @@ spec:
- name: vllm-leader
image: m.daocloud.io/quay.io/ascend/cann:8.2.rc1-a3-ubuntu22.04-py3.11
env:
- name: VLLM_USE_MODELSCOPE
value: "true"
- name: WORKSPACE
value: "/root/workspace"
- name: WORLD_SIZE
value: "2"
- name: NPU_PER_NODE
value: "16"
# Set vLLM version and vLLM-Ascend version here, once there is a new release, update here.
- name: VLLM_VERSION
value: "v0.11.0"
@ -37,6 +31,7 @@ spec:
- -c
- |
bash /root/.cache/tests/run.sh
tail -f /dev/null
resources:
limits:
huawei.com/ascend-1980: "16"
@ -77,14 +72,8 @@ spec:
- name: vllm-worker
image: m.daocloud.io/quay.io/ascend/cann:8.2.rc1-a3-ubuntu22.04-py3.11
env:
- name: VLLM_USE_MODELSCOPE
value: "true"
- name: WORKSPACE
value: "/root/workspace"
- name: WORLD_SIZE
value: "2"
- name: NPU_PER_NODE
value: "16"
# Set vLLM version and vLLM-Ascend version here, once there is a new release, update here.
- name: VLLM_VERSION
value: "v0.11.0"
@ -97,6 +86,7 @@ spec:
- -c
- |
bash /root/.cache/tests/run.sh
tail -f /dev/null
resources:
limits:
huawei.com/ascend-1980: "16"

View File

@ -32,10 +32,7 @@ checkout_src() {
#mooncake
if [ ! -d "$SRC_DIR/Mooncake" ]; then
git clone https://github.com/kvcache-ai/Mooncake.git "$SRC_DIR/Mooncake"
cd "$SRC_DIR/Mooncake"
git checkout 06cc217504a6f1b0cdaa26b096b985651b262748
cd -
git clone -b pooling_async_memecpy_v1 https://github.com/AscendTransport/Mooncake "$SRC_DIR/Mooncake"
fi
}
@ -62,25 +59,77 @@ install_vllm() {
install_mooncake() {
echo "====> Install mooncake"
apt-get update
apt install -y --allow-change-held-packages python3 python-is-python3
apt-get update -y
apt-get install -y --no-install-recommends mpich libmpich-dev
cd $SRC_DIR/Mooncake
sed -i '/option(USE_ASCEND_DIRECT)/s/OFF/ON/' mooncake-common/common.cmake
bash dependencies.sh --yes
apt purge mpich libmpich-dev -y
apt purge openmpi-bin -y
apt purge openmpi-bin libopenmpi-dev -y
apt install mpich libmpich-dev -y
export CPATH=/usr/lib/aarch64-linux-gnu/mpich/include/:$CPATH
export CPATH=/usr/lib/aarch64-linux-gnu/openmpi/lib:$CPATH
mkdir build
cd -
cd $SRC_DIR/Mooncake/build
cmake ..
make -j
make install
cp mooncake-transfer-engine/src/transport/ascend_transport/hccl_transport/ascend_transport_c/libascend_transport_mem.so /usr/local/Ascend/ascend-toolkit/latest/python/site-packages/
cp mooncake-transfer-engine/src/libtransfer_engine.so /usr/local/Ascend/ascend-toolkit/latest/python/site-packages/
cd -
}
kill_npu_processes() {
pgrep python3 | xargs -r kill -9
pgrep VLLM | xargs -r kill -9
sleep 4
}
run_tests() {
echo "====> Run tests"
cd "$SRC_DIR/vllm-ascend"
pytest -sv tests/e2e/multi_node/test_multi_dp.py
shopt -s nullglob
declare -A results
local total=0
local passed=0
local failed=0
local REPORT_FILE="/root/.cache/test_summary.md"
echo "#Nightly Multi-node Test Summary" > "$REPORT_FILE"
echo "" >> "$REPORT_FILE"
echo "| Config File | Result |" >> "$REPORT_FILE"
echo "|--------------|---------|" >> "$REPORT_FILE"
for file in tests/e2e/nightly/multi_node/config/models/*.yaml; do
export CONFIG_YAML_PATH="$file"
echo "Running test with config: $CONFIG_YAML_PATH"
if pytest -sv tests/e2e/nightly/multi_node/test_multi_node.py; then
results["$file"]="✅ PASS"
((passed++))
else
results["$file"]="❌ FAIL"
((failed++))
fi
((total++))
echo "| \`$file\` | ${results[$file]} |" >> "$REPORT_FILE"
echo "------------------------------------------"
kill_npu_processes
done
shopt -u nullglob
echo "" >> "$REPORT_FILE"
echo "## Summary" >> "$REPORT_FILE"
echo "- **Total:** $total" >> "$REPORT_FILE"
echo "- **Passed:** $passed" >> "$REPORT_FILE"
echo "- **Failed:** $failed" >> "$REPORT_FILE"
echo
echo "✅ Markdown report written to: $REPORT_FILE"
}
main() {
@ -89,7 +138,7 @@ main() {
checkout_src
install_sys_dependencies
install_vllm
#install_mooncake
install_mooncake
run_tests
}

View File

@ -0,0 +1,30 @@
from tests.e2e.conftest import RemoteOpenAIServer
from tests.e2e.nightly.multi_node.config.multi_node_config import (
DISAGGREGATED_PREFILL_PROXY_SCRIPT, MultiNodeConfig)
def test_multi_node() -> None:
config = MultiNodeConfig.from_yaml()
env_dict = config.envs
# perf_cmd = config.perf_cmd
# acc_cmd = config.acc_cmd
server_port = config.server_port if not config.disaggregated_prefill else config.proxy_port
server_host = config.cluster_ips[0]
with config.launch_server_proxy(DISAGGREGATED_PREFILL_PROXY_SCRIPT):
with RemoteOpenAIServer(
model=config.model,
vllm_serve_args=config.server_cmd,
server_port=server_port,
server_host=server_host,
env_dict=env_dict,
auto_port=False,
max_wait_seconds=2000,
) as remote_server:
# base_url = remote_server.url_root
if config.is_master:
pass
# TODO: enable perf and acc test
# subprocess.run(perf_cmd, check=True)
# subprocess.run(acc_cmd, check=True)
else:
remote_server.hang_until_terminated()

View File

@ -7,6 +7,7 @@ from vllm.model_executor.layers.layernorm import RMSNorm
from tests.ut.base import PytestBase
from vllm_ascend.quantization.w8a8 import AscendW8A8LinearMethod
from vllm_ascend.utils import version_check
def mock_rms_norm(x, weight, eps):
@ -26,6 +27,15 @@ def mock_add_rms_norm_quant(x, residual, weight, quant_scale, quant_offset,
return x_out_quant, None, residual_out_quant
def mock_add_rms_norm_quant_with_bias(x, residual, weight, quant_scale,
quant_offset, beta, epsilon):
x_out = 2 * x
residual_out = 2 * residual
x_out_quant = x_out.to(torch.int8)
residual_out_quant = residual_out.to(torch.int8)
return x_out_quant, None, residual_out_quant
class TestAscendRMSNorm(PytestBase):
@pytest.fixture(autouse=True)
@ -33,8 +43,10 @@ class TestAscendRMSNorm(PytestBase):
mocker.patch("torch_npu.npu_rms_norm", side_effect=mock_rms_norm)
mocker.patch("torch_npu.npu_add_rms_norm",
side_effect=mock_add_rms_norm)
torch_npu_check = version_check()
arnq_side_effect = mock_add_rms_norm_quant_with_bias if torch_npu_check else mock_add_rms_norm_quant
mocker.patch("torch_npu.npu_add_rms_norm_quant",
side_effect=mock_add_rms_norm_quant)
side_effect=arnq_side_effect)
mocker.patch("torch.ops.vllm.maybe_wait_prefetch_done",
side_effect=lambda x: None)
@ -70,8 +82,10 @@ class TestAscendRMSNorm(PytestBase):
mock_model_instance = mocker.MagicMock()
mock_forward_context.model_instance = mock_model_instance
torch_npu_check = version_check()
num_hidden_layers = 3 if torch_npu_check else 2
mock_model_instance.model.layers = [
mocker.MagicMock() for _ in range(2)
mocker.MagicMock() for _ in range(num_hidden_layers)
]
mock_layer_0 = mock_model_instance.model.layers[0]
@ -101,7 +115,7 @@ class TestAscendRMSNorm(PytestBase):
mock_forward_context.addrmsnorm_quant_fusion_enabled = True
mock_forward_context.prefetch_mlp_enabled = False
mock_forward_context.layer_idx = 0
mock_forward_context.num_hidden_layers = 2
mock_forward_context.num_hidden_layers = num_hidden_layers
mock_forward_context.fusion_linear = "gate_up_dense"
# Ensure fusion and layer_idx increment are handled correctly
@ -121,18 +135,37 @@ class TestAscendRMSNorm(PytestBase):
assert mock_forward_context.fusion_linear == "gate_up_dense"
assert mock_forward_context.layer_idx == 1
if torch_npu_check:
mock_forward_context.fusion_linear = "gate_moe"
x_out, residual_out = layer.forward_oot(x, residual)
assert mock_get_forward_context.call_count == 3
assert mock_forward_context.fusion_linear == "qkv_dense"
fusion_linear_expected = "qkv_moe" if torch_npu_check else "qkv_dense"
assert mock_forward_context.fusion_linear == fusion_linear_expected
assert mock_forward_context.layer_idx == 2
x_out, residual_out = layer.forward_oot(x, residual)
assert mock_get_forward_context.call_count == 4
assert mock_forward_context.fusion_linear == "qkv_dense"
fusion_linear_expected = "gate_moe" if torch_npu_check else "qkv_dense"
assert mock_forward_context.fusion_linear == fusion_linear_expected
assert mock_forward_context.layer_idx == 2
if not torch_npu_check:
return
# last layer returned directly
x_out, residual_out = layer.forward_oot(x, residual)
assert mock_get_forward_context.call_count == 5
assert mock_forward_context.fusion_linear == "qkv_moe"
assert mock_forward_context.layer_idx == 3
x_out, residual_out = layer.forward_oot(x, residual)
assert mock_get_forward_context.call_count == 6
assert mock_forward_context.fusion_linear == "qkv_moe"
assert mock_forward_context.layer_idx == 3
if __name__ == '__main__':
unittest.main()

View File

@ -11,7 +11,7 @@ from vllm.forward_context import (BatchDescriptor, get_forward_context,
set_forward_context)
import vllm_ascend.envs as envs_ascend
from vllm_ascend.utils import enable_sp, is_moe_model
from vllm_ascend.utils import enable_sp, is_moe_model, version_check
if TYPE_CHECKING:
from vllm_ascend.ops.weight_prefetch import WeightPrefetchMethod
@ -160,13 +160,18 @@ def set_ascend_forward_context(
# this optim now just support dense models due to the specific operators used.
# Once the necessary conditions are met, support for MOE models will also be added.
from vllm_ascend.quantization.quant_config import AscendQuantConfig
model_type_scope = ["llama", "qwen2", "qwen3"]
if version_check():
model_type_scope.append("qwen3_moe")
addrmsnorm_quant_fusion_enabled = isinstance(vllm_config.quant_config, AscendQuantConfig) and \
vllm_config.model_config.hf_config.model_type in ["llama", "qwen2", "qwen3"] and \
vllm_config.model_config.hf_config.model_type in model_type_scope and \
forward_context.layer_idx is not None
if addrmsnorm_quant_fusion_enabled:
forward_context.model_instance = model_instance
forward_context.num_hidden_layers = vllm_config.model_config.hf_config.num_hidden_layers
forward_context.fusion_linear = "gate_up_dense" if forward_context.layer_idx == 0 else "qkv_dense"
if vllm_config.model_config.hf_config.model_type == "qwen3_moe":
forward_context.fusion_linear = "gate_moe" if forward_context.layer_idx == 0 else "qkv_moe"
forward_context.addrmsnorm_quant_fusion_enabled = addrmsnorm_quant_fusion_enabled
if num_tokens is None and attn_metadata is not None:

View File

@ -33,13 +33,12 @@ from vllm.v1.kv_cache_interface import AttentionSpec
from vllm_ascend.attention.utils import (AscendCommonAttentionMetadata,
maybe_save_kv_layer_to_connector,
version_check,
wait_for_kv_layer_from_connector)
from vllm_ascend.compilation.acl_graph import (get_graph_params,
update_graph_params_workspaces)
from vllm_ascend.ops.attention import vanilla_chunked_prefill
from vllm_ascend.utils import (ACL_FORMAT_FRACTAL_NZ, aligned_16, is_310p,
nd_to_nz_2d, nd_to_nz_spec)
nd_to_nz_2d, nd_to_nz_spec, version_check)
from ..utils import weak_ref_tensors
@ -141,7 +140,13 @@ class AscendMetadata:
# The sequence length per sequence. Sequence length means the computed
# tokens + new tokens (is None if it is a decoding).
# (batch_size,)
# TODO(Angazenn): The following parameters are quite redundant and
# contains similar information (such as seq_lens seq_lens_list). We
# should simplified these parameters once attention schema in vLLM-Ascend
# is unified.
seq_lens: torch.Tensor = None
seq_lens_list: List[int] = None # type: ignore
actual_seq_lengths_q: List[int] = None # type: ignore
query_start_loc: torch.Tensor = None
query_lens: torch.Tensor = None
@ -230,7 +235,9 @@ class AscendAttentionMetadataBuilder:
query_start_loc=query_start_loc,
query_lens=query_lens,
seq_lens=seq_lens,
seq_lens_list=seq_lens.tolist(),
max_query_len=common_attn_metadata.max_query_len,
actual_seq_lengths_q=query_start_loc_cpu[1:].tolist(),
slot_mapping=slot_mapping,
attn_mask=attn_mask,
attn_state=attn_state,
@ -529,8 +536,8 @@ class AscendAttentionBackendImpl(AttentionImpl):
block_table=attn_metadata.block_tables,
input_layout="TND",
block_size=block_size,
actual_seq_lengths=attn_metadata.query_start_loc[1:],
actual_seq_lengths_kv=attn_metadata.seq_lens,
actual_seq_lengths=attn_metadata.actual_seq_lengths_q,
actual_seq_lengths_kv=attn_metadata.seq_lens_list,
num_key_value_heads=self.num_kv_heads,
num_heads=self.num_heads,
scale=self.scale,

View File

@ -1,10 +1,8 @@
import functools
from dataclasses import dataclass
from typing import Any, List
import torch
import torch.nn.functional as F
import torch_npu
from vllm.distributed.kv_transfer import (get_kv_transfer_group,
has_kv_transfer_group,
is_v1_kv_transfer_group)
@ -142,20 +140,6 @@ def maybe_save_kv_layer_to_connector(
connector.save_kv_layer(layer_name, kv_cache_layer, attn_metadata)
@functools.cache
def version_check():
import re
torch_npu_version = torch_npu.version.__version__
date_pattern = r'dev(\d{8})'
match = re.search(date_pattern, torch_npu_version)
if match:
full_date = match.group(1)
if full_date >= "20250919":
return True
return False
def round_up(val: int, align: int) -> int:
if align == 0:
return 0

View File

@ -18,7 +18,7 @@ from vllm.forward_context import BatchDescriptor, get_forward_context
from vllm.logger import logger
from vllm.platforms import current_platform
from vllm_ascend.attention.utils import version_check
from vllm_ascend.utils import version_check
from ..utils import weak_ref_tensors

View File

@ -18,28 +18,43 @@
from typing import Optional, Tuple, Union, cast
import torch
from vllm.config import get_current_vllm_config
from vllm.forward_context import get_forward_context
from vllm.model_executor.layers.layernorm import GemmaRMSNorm, RMSNorm
from vllm_ascend.utils import version_check
def _addrmsnorm_forward_oot(
self,
x: torch.Tensor,
residual: torch.Tensor,
layer: Optional[torch.nn.Module] = None,
bias: Optional[torch.nn.Parameter] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
import torch_npu
from vllm_ascend.utils import is_310p
torch_npu_check = version_check()
if layer is not None and not is_310p():
x, _, residual = torch_npu.npu_add_rms_norm_quant(
x,
residual,
self.weight,
layer.aclnn_input_scale,
layer.aclnn_input_offset,
epsilon=self.variance_epsilon)
if torch_npu_check:
x, _, residual = torch_npu.npu_add_rms_norm_quant(
x,
residual,
self.weight,
layer.aclnn_input_scale,
layer.aclnn_input_offset,
beta=bias,
epsilon=self.variance_epsilon)
else:
x, _, residual = torch_npu.npu_add_rms_norm_quant(
x,
residual,
self.weight,
layer.aclnn_input_scale,
layer.aclnn_input_offset,
epsilon=self.variance_epsilon)
else:
if is_310p():
orig_dtype = residual.dtype
@ -50,12 +65,32 @@ def _addrmsnorm_forward_oot(
else:
x, _, residual = torch_npu.npu_add_rms_norm(
x, residual, self.weight, self.variance_epsilon)
if torch_npu_check and bias is not None:
x.add_(bias)
torch.ops.vllm.maybe_wait_prefetch_done(x)
return x, residual
class AscendRMSNorm(RMSNorm):
def __init__(
self,
hidden_size: int,
eps: float = 1e-6,
var_hidden_size: Optional[int] = None,
has_weight: bool = True,
dtype: Optional[torch.dtype] = None,
) -> None:
super().__init__(hidden_size, eps, var_hidden_size, has_weight, dtype)
vllm_config = get_current_vllm_config()
self.bias = None
self.torch_npu_check = version_check()
# quantization with anti_method m4 will generate none-zero norm bias
if self.torch_npu_check and vllm_config.quant_config is not None and \
any("norm.bias" in name for name in vllm_config.quant_config.quant_description.keys()):
self.bias = torch.nn.Parameter(torch.zeros(hidden_size),
requires_grad=False)
def forward_oot(
self,
x: torch.Tensor,
@ -66,10 +101,13 @@ class AscendRMSNorm(RMSNorm):
if residual is not None:
assert x.size(0) == residual.size(0)
x, residual = _addrmsnorm_forward_oot(
self, x, residual, self.next_need_quant_fusion_linear)
self, x, residual, self.next_need_quant_fusion_linear,
self.bias)
return x, residual
x, residual = torch_npu.npu_rms_norm(x, self.weight,
self.variance_epsilon)
if self.torch_npu_check and self.bias is not None:
x.add_(self.bias)
return x
@property
@ -99,6 +137,13 @@ class AscendRMSNorm(RMSNorm):
# does not need to be repeated
if not forward_context.prefetch_mlp_enabled:
forward_context.layer_idx += 1
elif fusion_linear == "qkv_moe":
next_linear = model_instance.model.layers[
layer_idx].self_attn.qkv_proj
forward_context.fusion_linear = "gate_moe"
elif fusion_linear == "gate_moe":
forward_context.fusion_linear = "qkv_moe"
forward_context.layer_idx += 1
from vllm_ascend.quantization.w8a8 import AscendW8A8LinearMethod
if next_linear is not None and \
not isinstance(next_linear.quant_method.quant_method, AscendW8A8LinearMethod):

View File

@ -177,7 +177,6 @@ def quant_apply_mlp(hidden_states: torch.Tensor,
group_type=0,
group_list=group_list,
output_dtype=_output_dtype)[0]
return hidden_states

View File

@ -7,6 +7,7 @@ from vllm.forward_context import get_forward_context
from vllm_ascend.ascend_config import WeightPrefetchConfig
from vllm_ascend.ops.linear import (AscendQKVParallelLinear,
AscendRowParallelLinear)
from vllm_ascend.utils import version_check
SUPPORTED_MODULES = ["attn", "mlp", "moe"]
MOE_PREFETCH_TOKEN_THRESHOLD = 96
@ -82,14 +83,15 @@ class WeightPrefetchMethod:
if not self.moe.is_active_this_forward:
return
forward_context = get_forward_context()
if not version_check():
forward_context.layer_idx += 1
weight = forward_context.model_instance.model.layers[
forward_context.layer_idx].mlp.experts.w13_weight
forward_context.layer_idx - 1].mlp.experts.w13_weight
weight_size = weight.data.element_size() * weight.data.numel(
) * self.moe.prefetch_ratio.get(prefix, 0)
torch.ops.vllm.prefetch_preprocess(weight=weight,
start_flag=None,
max_weight_size=int(weight_size))
forward_context.layer_idx += 1
def maybe_prefetch_moe_weight_postprocess(self, stop_flag: torch.Tensor):
if not self.moe.is_active_this_forward:

View File

@ -452,31 +452,10 @@ class NPUTorchairModelRunner(NPUModelRunner):
self.torchair_graph_batch_sizes.append(self.max_num_reqs)
# padded max number tokens = max_num_req * decode_token_per_req
if self.decode_token_per_req > 1:
# pd disaggregation scenario need redundant_batch_sizes to avoid each batch's seq_len exceed 16 tokens
if self.is_kv_consumer:
FIA_SEQ_LEN_LIMIT = 16
self.torchair_graph_batch_sizes = [
(graph_batch_size +
math.ceil(graph_batch_size / FIA_SEQ_LEN_LIMIT) +
math.ceil(graph_batch_size * self.decode_token_per_req /
FIA_SEQ_LEN_LIMIT / FIA_SEQ_LEN_LIMIT)) *
self.decode_token_per_req
for graph_batch_size in self.torchair_graph_batch_sizes
]
new_max_num_reqs = math.ceil(
max(self.torchair_graph_batch_sizes) /
self.decode_token_per_req)
if self.max_num_reqs < new_max_num_reqs:
logger.warning(
f"max_num_reqs is updated to {new_max_num_reqs}")
self.max_num_reqs = new_max_num_reqs
self.scheduler_config.max_num_seqs = new_max_num_reqs
else:
self.torchair_graph_batch_sizes = [
graph_batch_size * self.decode_token_per_req
for graph_batch_size in self.torchair_graph_batch_sizes
]
self.torchair_graph_batch_sizes = [
graph_batch_size * self.decode_token_per_req
for graph_batch_size in self.torchair_graph_batch_sizes
]
# NOTE: when enable_expert_parallel on A3, we need to check if `graph_batch_size` is divisible by `tp_size`
# Because we use x_active_mask for dispatch/combine op on A3, which requires that input shape should be same

View File

@ -546,7 +546,8 @@ def register_ascend_customop(vllm_config: Optional[VllmConfig] = None):
if vllm_config is not None and \
vllm_config.quant_config is not None and \
any("norm.bias" in name for name in vllm_config.quant_config.quant_description.keys()):
any("norm.bias" in name for name in vllm_config.quant_config.quant_description.keys()) and \
not version_check():
REGISTERED_ASCEND_OPS["RMSNorm"] = AscendQuantRMSNorm
for name, op_cls in REGISTERED_ASCEND_OPS.items():
@ -725,3 +726,18 @@ def calculate_dp_buffer_size() -> int:
def is_hierarchical_communication_enabled():
return (os.getenv("HCCL_INTRA_ROCE_ENABLE", "") == "0"
and os.getenv("HCCL_INTRA_PCIE_ENABLE", "") == "1")
@functools.cache
def version_check():
"""check if torch_npu version >= dev20250919"""
import re
torch_npu_version = torch_npu.version.__version__
date_pattern = r'dev(\d{8})'
match = re.search(date_pattern, torch_npu_version)
if match:
full_date = match.group(1)
if full_date >= "20250919":
return True
return False