mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 21:53:54 +08:00
static EPLB fix bug, add unit test (#1186)
<!-- Thanks for sending a pull request! BEFORE SUBMITTING, PLEASE READ https://docs.vllm.ai/en/latest/contributing/overview.html --> ### What this PR does / why we need it? <!-- - Please clarify what changes you are proposing. The purpose of this section is to outline the changes and how this PR fixes the issue. If possible, please consider writing useful notes for better and faster reviews in your PR. - Please clarify why the changes are needed. For instance, the use case and bug description. - Fixes # --> 1.add static EPLB unit test 2.fix bug: Tensor cannot be directly judged by if statements ### Does this PR introduce _any_ user-facing change? <!-- Note that it means *any* user-facing change including all aspects such as API, interface or other behavior changes. Documentation-only updates are not considered user-facing changes. --> ### How was this patch tested? <!-- CI passed with new added/existing test. If it was tested in a way different from regular unit tests, please clarify how you tested step by step, ideally copy and paste-able, so that other reviewers can test and check, and descendants can verify in the future. If tests were not added, please describe why they were not added and/or why it was difficult to add. --> Run the unit test. --------- Signed-off-by: songshanhu07 <1763685535@qq.com>
This commit is contained in:
@ -1,2 +1,2 @@
|
||||
pytest-asyncio
|
||||
|
||||
pytest-mock
|
||||
|
@ -4,6 +4,7 @@ modelscope
|
||||
openai
|
||||
pytest >= 6.0
|
||||
pytest-asyncio
|
||||
pytest-mock
|
||||
lm-eval
|
||||
ray
|
||||
types-jsonschema
|
||||
|
146
tests/ut/ops/test_expert_load_balancer.py
Normal file
146
tests/ut/ops/test_expert_load_balancer.py
Normal file
@ -0,0 +1,146 @@
|
||||
# fused moe ops test will hit the infer_schema error, we need add the patch
|
||||
# here to make the test pass.
|
||||
import vllm_ascend.patch.worker.patch_common.patch_utils # type: ignore[import] # isort: skip # noqa
|
||||
|
||||
import json
|
||||
from typing import List, TypedDict
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from vllm_ascend.ops.expert_load_balancer import ExpertLoadBalancer
|
||||
|
||||
|
||||
class Device(TypedDict):
|
||||
device_id: int
|
||||
device_expert: List[int]
|
||||
|
||||
|
||||
class Layer(TypedDict):
|
||||
layer_id: int
|
||||
device_count: int
|
||||
device_list: List[Device]
|
||||
|
||||
|
||||
class MockData(TypedDict):
|
||||
moe_layer_count: int
|
||||
layer_list: List[Layer]
|
||||
|
||||
|
||||
MOCK_DATA: MockData = {
|
||||
"moe_layer_count":
|
||||
1,
|
||||
"layer_list": [{
|
||||
"layer_id":
|
||||
0,
|
||||
"device_count":
|
||||
2,
|
||||
"device_list": [{
|
||||
"device_id": 0,
|
||||
"device_expert": [7, 2, 0, 3, 5]
|
||||
}, {
|
||||
"device_id": 1,
|
||||
"device_expert": [6, 1, 4, 7, 2]
|
||||
}]
|
||||
}]
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_expert_load_balancer(tmp_path):
|
||||
json_file = tmp_path / "expert_map.json"
|
||||
with open(json_file, 'w') as f:
|
||||
json.dump(MOCK_DATA, f)
|
||||
|
||||
return ExpertLoadBalancer(str(json_file), global_expert_num=8)
|
||||
|
||||
|
||||
def test_init(mock_expert_load_balancer):
|
||||
assert isinstance(mock_expert_load_balancer.expert_map_tensor,
|
||||
torch.Tensor)
|
||||
assert mock_expert_load_balancer.layers_num == MOCK_DATA["moe_layer_count"]
|
||||
assert mock_expert_load_balancer.ranks_num == MOCK_DATA["layer_list"][0][
|
||||
"device_count"]
|
||||
|
||||
|
||||
def test_generate_index_dicts(mock_expert_load_balancer):
|
||||
tensor_2d = torch.tensor([[7, 2, 0, 3, 5], [6, 1, 4, 7, 2]])
|
||||
result = mock_expert_load_balancer.generate_index_dicts(tensor_2d)
|
||||
expected_result = [{
|
||||
7: 0,
|
||||
2: 1,
|
||||
0: 2,
|
||||
3: 3,
|
||||
5: 4
|
||||
}, {
|
||||
6: 5,
|
||||
1: 6,
|
||||
4: 7,
|
||||
7: 8,
|
||||
2: 9
|
||||
}]
|
||||
assert result == expected_result
|
||||
|
||||
|
||||
def test_generate_expert_placement_map(mock_expert_load_balancer):
|
||||
expert_placement_map = mock_expert_load_balancer.generate_expert_placement_map(
|
||||
)
|
||||
assert expert_placement_map.shape == (mock_expert_load_balancer.layers_num,
|
||||
mock_expert_load_balancer.ranks_num,
|
||||
8)
|
||||
assert torch.all(expert_placement_map >= -1)
|
||||
|
||||
|
||||
def test_generate_log2phy_expert_map(mock_expert_load_balancer):
|
||||
layer_id = 0
|
||||
log2phy_map = mock_expert_load_balancer.generate_log2phy_expert_map(
|
||||
layer_id)
|
||||
assert log2phy_map.shape == (mock_expert_load_balancer.ranks_num, 8)
|
||||
assert torch.all(log2phy_map >= -1)
|
||||
|
||||
|
||||
def test_get_rank_placement_map(mock_expert_load_balancer, mocker):
|
||||
mocker.patch("torch_npu.npu._lazy_init")
|
||||
mocker.patch('torch.npu.current_device', return_value='cpu')
|
||||
layer_id = 0
|
||||
rank_id = 0
|
||||
rank_local_expert_num, rank_expert_map = mock_expert_load_balancer.get_rank_placement_map(
|
||||
layer_id, rank_id)
|
||||
assert rank_local_expert_num == 5
|
||||
expected_tensor = torch.tensor([2, -1, 1, 3, -1, 4, -1, 0],
|
||||
dtype=torch.int32).to(
|
||||
rank_expert_map.device)
|
||||
assert rank_expert_map.equal(expected_tensor)
|
||||
|
||||
rank_id = 1
|
||||
rank_local_expert_num, rank_expert_map = mock_expert_load_balancer.get_rank_placement_map(
|
||||
layer_id, rank_id)
|
||||
expected_tensor = torch.tensor([-1, 1, 4, -1, 2, -1, 0, 3],
|
||||
dtype=torch.int32).to(
|
||||
rank_expert_map.device)
|
||||
assert rank_expert_map.equal(expected_tensor)
|
||||
|
||||
|
||||
def test_get_rank_log2phy_map(mock_expert_load_balancer):
|
||||
layer_id = 0
|
||||
rank_id = 0
|
||||
log2phy_map = mock_expert_load_balancer.get_rank_log2phy_map(
|
||||
layer_id, rank_id)
|
||||
expected_tensor = torch.tensor([2, 6, 1, 3, 7, 4, 5, 0],
|
||||
dtype=torch.int32).to(log2phy_map.device)
|
||||
assert log2phy_map.equal(expected_tensor)
|
||||
|
||||
rank_id = 1
|
||||
log2phy_map = mock_expert_load_balancer.get_rank_log2phy_map(
|
||||
layer_id, rank_id)
|
||||
expected_tensor = torch.tensor([2, 6, 9, 3, 7, 4, 5, 8],
|
||||
dtype=torch.int32).to(log2phy_map.device)
|
||||
assert log2phy_map.equal(expected_tensor)
|
||||
|
||||
|
||||
def test_get_global_redundant_expert_num(mock_expert_load_balancer):
|
||||
redundant_expert_num = mock_expert_load_balancer.get_global_redundant_expert_num(
|
||||
)
|
||||
expected_redundant_expert_num = len(MOCK_DATA["layer_list"][0]["device_list"][0]["device_expert"]) * \
|
||||
MOCK_DATA["layer_list"][0]["device_count"] - 8
|
||||
assert redundant_expert_num == expected_redundant_expert_num
|
@ -118,7 +118,7 @@ def fused_experts_with_mc2(
|
||||
global_redundant_expert_num: int = 0,
|
||||
shared_experts: Optional[Any] = None,
|
||||
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
||||
if log2phy:
|
||||
if log2phy is not None:
|
||||
topk_ids = log2phy[topk_ids]
|
||||
global_bs = 0
|
||||
moe_expert_num = len(expert_map) + global_redundant_expert_num
|
||||
@ -233,7 +233,7 @@ def fused_experts_with_all2all(
|
||||
log2phy: torch.Tensor = None,
|
||||
global_redundant_expert_num: int = 0,
|
||||
):
|
||||
if log2phy:
|
||||
if log2phy is not None:
|
||||
topk_ids = log2phy[topk_ids]
|
||||
original_shape = hidden_states.shape
|
||||
if len(original_shape) == 3:
|
||||
|
Reference in New Issue
Block a user