【main】SP For Qwen3 MoE (#2209)

### What this PR does / why we need it?
Qwen3 MoE supports SP. In scenarios like AlltoAll, AlltoAllv, and MC2,
replacing AllReduce with Reduce-Scatter and AllGather achieves
computational benefits in norm operations while saving one AllGather
communication. This feature is enabled during the P-phase and delivers
notable gains in long-sequence scenarios (e.g., 16k–25k), with
performance improvements reaching 5%–10%.
### Does this PR introduce _any_ user-facing change?

### How was this patch tested?
``` 
compilation_config={
    "pass_config":{
        "enable_sequence_parallelism": True
    }
},
enable_expert_parallel=True,
```

- vLLM version: v0.10.0
- vLLM main:
9edd1db02b

---------

Signed-off-by: libaokui <libaokui@huawei.com>
Co-authored-by: libaokui <libaokui@huawei.com>
This commit is contained in:
lbk-sys
2025-08-07 09:15:49 +08:00
committed by GitHub
parent 57b9f02185
commit c611291661
11 changed files with 299 additions and 11 deletions

View File

@ -284,6 +284,7 @@ jobs:
pytest -sv tests/e2e/multicard/test_offline_inference_distributed.py::test_models_distributed_alltoallv
pytest -sv tests/e2e/multicard/test_offline_inference_distributed.py::test_models_distributed_Qwen3_W4A8DYNAMIC
pytest -sv tests/e2e/multicard/test_offline_inference_distributed.py::test_models_distributed_DeepSeek_W4A8DYNAMIC
pytest -sv tests/e2e/multicard/test_offline_inference_distributed.py::test_sp_for_qwen3_moe
pytest -sv tests/e2e/multicard/test_data_parallel.py
pytest -sv tests/e2e/multicard/ --ignore=tests/e2e/multicard/test_ilama_lora_tp2.py \
--ignore=tests/e2e/multicard/test_offline_inference_distributed.py \

View File

@ -234,3 +234,27 @@ def test_models_distributed_DeepSeek_W4A8DYNAMIC():
},
) as vllm_model:
vllm_model.generate_greedy(prompts, max_tokens)
def test_sp_for_qwen3_moe() -> None:
example_prompts = [
"Hello, my name is",
]
sampling_params = SamplingParams(max_tokens=5,
temperature=0.0,
top_k=50,
top_p=0.9)
with VllmRunner(
snapshot_download("Qwen/Qwen3-30B-A3B"),
dtype="auto",
tensor_parallel_size=2,
distributed_executor_backend="mp",
compilation_config={
"pass_config": {
"enable_sequence_parallelism": True
}
},
enable_expert_parallel=True,
) as vllm_model:
vllm_model.generate(example_prompts, sampling_params)

View File

@ -26,6 +26,7 @@ class TestNPUPlatform(TestBase):
self.mock_vllm_config.cache_config = MagicMock()
self.mock_vllm_config.scheduler_config = MagicMock()
self.mock_vllm_config.speculative_config = None
self.mock_vllm_config.compilation_config.pass_config.enable_sequence_parallelism = False
self.mock_ascend_config = MagicMock()
self.mock_ascend_config.torchair_graph_config.enabled = False

View File

@ -151,6 +151,7 @@ class AscendMetadata:
slot_mapping: torch.Tensor = None
enable_dbo_across_dp: bool = False
is_only_prefill: bool = False
class AscendAttentionMetadataBuilder:
@ -166,7 +167,8 @@ class AscendAttentionMetadataBuilder:
num_reqs,
num_actual_tokens,
max_query_len,
enable_dbo_across_dp: bool = False):
enable_dbo_across_dp: bool = False,
is_only_prefill: bool = False):
block_table = self.runner.input_batch.block_table[0].get_device_tensor(
)
@ -203,7 +205,8 @@ class AscendAttentionMetadataBuilder:
slot_mapping=slot_mapping,
attn_mask=attn_mask,
attn_state=attn_state,
enable_dbo_across_dp=enable_dbo_across_dp)
enable_dbo_across_dp=enable_dbo_across_dp,
is_only_prefill=is_only_prefill)
return attn_metadata

View File

@ -223,7 +223,9 @@ class AscendAttentionTorchairMetadataBuilder:
num_actual_tokens,
max_query_len,
graph_pad_size: int = -1,
enable_dbo_across_dp: bool = False):
enable_dbo_across_dp: bool = False,
*args,
**kwargs):
device = self.runner.device

View File

@ -384,6 +384,8 @@ class AscendMLAMetadataBuilder:
graph_pad_size: int = -1,
query_start_loc: torch.Tensor = None,
enable_dbo_across_dp: bool = False,
*args,
**kwargs,
) -> AscendMLAMetadata:
assert self._num_decodes + self._num_prefills == num_reqs

View File

@ -16,14 +16,15 @@
# limitations under the License.
# Adapted from vllm/model_executor/models/qwen3_moe.py
# This file is a part of the vllm-ascend project.
from typing import Optional
from typing import Optional, Union
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, CompilationLevel, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.distributed.parallel_state import (get_dp_group, get_ep_group,
get_tp_group)
from vllm.forward_context import get_forward_context
@ -44,8 +45,11 @@ from vllm.model_executor.models.qwen3_moe import (Qwen3MoeAttention,
from vllm.model_executor.models.utils import (
PPMissingLayer, extract_layer_index,
make_empty_intermediate_tensors_factory, make_layers, maybe_prefix)
from vllm.sequence import IntermediateTensors
from vllm_ascend.ops.fused_moe import AscendFusedMoE
from vllm_ascend.ops.sequence_parallel import (MetadataForPadding,
init_metadata_for_sp)
class CustomSparseMoeBlock(Qwen3MoeSparseMoeBlock):
@ -96,6 +100,7 @@ class CustomSparseMoeBlock(Qwen3MoeSparseMoeBlock):
self,
hidden_states,
attn_metadata=None,
_metadata_for_padding: Optional[MetadataForPadding] = None,
):
if attn_metadata is None:
attn_metadata = get_forward_context().attn_metadata
@ -114,6 +119,7 @@ class CustomSparseMoeBlock(Qwen3MoeSparseMoeBlock):
top_k=self.top_k,
enable_force_load_balance=enable_force_load_balance,
shared_experts=None,
_metadata_for_padding=_metadata_for_padding,
)
return hidden_states
@ -155,14 +161,14 @@ class CustomQwen3MoeDecoderLayer(Qwen3MoeDecoderLayer):
layer_idx = extract_layer_index(prefix)
mlp_only_layers = ([] if not hasattr(config, "mlp_only_layers") else
config.mlp_only_layers)
use_aclgraph = (vllm_config is not None
and vllm_config.compilation_config.level
== CompilationLevel.PIECEWISE
and not vllm_config.model_config.enforce_eager)
self.use_aclgraph = (vllm_config is not None
and vllm_config.compilation_config.level
== CompilationLevel.PIECEWISE
and not vllm_config.model_config.enforce_eager)
if (layer_idx not in mlp_only_layers) and (
config.num_experts > 0 and
(layer_idx + 1) % config.decoder_sparse_step == 0):
if not use_aclgraph:
if not self.use_aclgraph:
# FIXME: custom sparse moe block doesn't work with aclgraph.
self.mlp = CustomSparseMoeBlock(config=config,
quant_config=quant_config,
@ -182,6 +188,60 @@ class CustomQwen3MoeDecoderLayer(Qwen3MoeDecoderLayer):
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.enable_sequence_parallelism = (
vllm_config.compilation_config.pass_config.
enable_sequence_parallelism if vllm_config is not None else False)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
_metadata_for_padding: Optional[MetadataForPadding] = None,
) -> torch.Tensor:
# To prevent precision issues during the decoder phase when only prefilling enables SP
if not self.enable_sequence_parallelism:
self.self_attn.o_proj.reduce_results = True
else:
self.self_attn.o_proj.reduce_results = not _metadata_for_padding.not_dummy_and_is_prefill if _metadata_for_padding is not None else True
# Self Attention
if residual is None:
residual = hidden_states
if _metadata_for_padding and _metadata_for_padding.not_dummy_and_is_prefill:
residual = _metadata_for_padding.padding_slice(residual)
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
if _metadata_for_padding and _metadata_for_padding.not_dummy_and_is_prefill:
hidden_states = _metadata_for_padding.allgather_unpadding_aligned(
hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
)
if _metadata_for_padding and _metadata_for_padding.not_dummy_and_is_prefill:
hidden_states = _metadata_for_padding.padding_aligned_reduce_scatter(
hidden_states)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
if not self.use_aclgraph:
hidden_states = self.mlp(
hidden_states, _metadata_for_padding=_metadata_for_padding)
else:
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
@support_torch_compile
class CustomQwen3MoeModel(Qwen3MoeModel):
@ -216,6 +276,45 @@ class CustomQwen3MoeModel(Qwen3MoeModel):
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
_metadata_for_padding: Optional[MetadataForPadding] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for i in range(self.start_layer, self.end_layer):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
residual,
_metadata_for_padding=_metadata_for_padding)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.norm(hidden_states, residual)
if _metadata_for_padding and _metadata_for_padding.not_dummy_and_is_prefill:
hidden_states = _metadata_for_padding.allgather_unpadding_aligned(
hidden_states)
return hidden_states
class CustomQwen3MoeForCausalLM(Qwen3MoeForCausalLM):
packed_modules_mapping = {
@ -253,6 +352,7 @@ class CustomQwen3MoeForCausalLM(Qwen3MoeForCausalLM):
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
self.enable_sequence_parallelism = vllm_config.compilation_config.pass_config.enable_sequence_parallelism
# Set MoE hyperparameters
self.expert_weights: list[torch.Tensor] = []
@ -273,3 +373,16 @@ class CustomQwen3MoeForCausalLM(Qwen3MoeForCausalLM):
self.num_moe_layers = len(self.moe_layers)
self.num_expert_groups = 1
self.num_shared_experts = 0
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
_metadata_for_padding = init_metadata_for_sp(
input_ids, self.enable_sequence_parallelism)
hidden_states = self.model(input_ids, positions, intermediate_tensors,
inputs_embeds, _metadata_for_padding)
return hidden_states

View File

@ -47,6 +47,7 @@ from vllm_ascend.distributed.parallel_state import get_mc2_group
from vllm_ascend.ops.expert_load_balancer import ExpertLoadBalancer
from vllm_ascend.ops.moe_dispatcher.token_dispatcher import (
MoEAlltoAllSeqOverLapDispatcher, MoEDispatcherConfig)
from vllm_ascend.ops.sequence_parallel import MetadataForPadding
from vllm_ascend.torchair.utils import npu_stream_switch, npu_wait_tensor
from vllm_ascend.utils import (AscendSocVersion, dispose_tensor,
get_all_reduce_merge_state,
@ -1347,7 +1348,8 @@ class AscendFusedMoE(FusedMoE):
top_k: Optional[int] = None,
shared_experts: Optional[Any] = None,
gate=None,
replace_allreduce: bool = False):
replace_allreduce: bool = False,
_metadata_for_padding: Optional[MetadataForPadding] = None):
assert self.quant_method is not None
@ -1381,7 +1383,17 @@ class AscendFusedMoE(FusedMoE):
# When all_reduce_merge is in progress, shared_experts does not do all_reduce in mlp, but waits until shared_experts+router_experts are completed before doing all_reduce
shared_hidden_states = shared_experts(hidden_states)
mc2_mask = forward_context.mc2_mask
enable_sp = _metadata_for_padding is not None and _metadata_for_padding.not_dummy_and_is_prefill
tp_size = get_tensor_model_parallel_world_size()
if enable_sp:
tp_rank = get_tensor_model_parallel_rank()
mc2_mask_sp = _metadata_for_padding.mc2_mask if _metadata_for_padding is not None else forward_context.mc2_mask
chunk_mc2_mask = torch.tensor_split(mc2_mask_sp, tp_size, dim=0)
mc2_mask = chunk_mc2_mask[tp_rank]
replace_allreduce = True
if (fused_moe_state not in [
FusedMoEState.AllGather, FusedMoEState.AllGatherEP,
FusedMoEState.NaiveMulticast

View File

@ -0,0 +1,120 @@
import torch
from torch.nn import functional as F
from vllm.distributed import (get_tensor_model_parallel_world_size,
get_tp_group, tensor_model_parallel_all_gather,
tensor_model_parallel_reduce_scatter)
from vllm.forward_context import get_forward_context
from vllm_ascend.platform import NPUPlatform
class MetadataForPadding:
def __init__(self,
padding_flag=False,
lengths_sum_padding=0,
lengths_sum_unpadding=0,
pad_size=0,
not_dummy_and_is_prefill=False):
self.padding_flag = padding_flag
self.not_dummy_and_is_prefill = not_dummy_and_is_prefill
self.lengths_sum_padding = lengths_sum_padding
self.lengths_sum_unpadding = lengths_sum_unpadding
self.pad_size = pad_size
self.tp_size = get_tp_group().world_size
self.tp_rank_in_group = get_tp_group().rank_in_group
assert self.lengths_sum_padding % self.tp_size == 0
self.slice_size = self.lengths_sum_padding // self.tp_size
self.mc2_mask = torch.zeros(
self.lengths_sum_padding,
dtype=torch.bool,
device=NPUPlatform.device_type,
)
self.mc2_mask[:lengths_sum_unpadding] = True
def padding_aligned_reduce_scatter(self,
data: torch.Tensor) -> torch.Tensor:
if self.padding_flag:
pad_size = self.pad_size
padded_data = F.pad(data, (0, 0, 0, pad_size))
else:
padded_data = data
padded_data_reduce_scatter = tensor_model_parallel_reduce_scatter(
padded_data, 0)
return padded_data_reduce_scatter
def allgather_unpadding_aligned(self,
padded_data: torch.Tensor) -> torch.Tensor:
padded_data_allgather = tensor_model_parallel_all_gather(
padded_data, 0)
if self.padding_flag:
lengths_sum_unpadding = self.lengths_sum_unpadding
unpadding_data = padded_data_allgather[:lengths_sum_unpadding]
else:
unpadding_data = padded_data_allgather
return unpadding_data
def padding_slice(self, data: torch.Tensor) -> torch.Tensor:
padded_data = F.pad(data, (0, 0, 0, self.pad_size))
start = self.tp_rank_in_group * self.slice_size
end = start + self.slice_size
slice_data = padded_data[start:end]
return slice_data
def padding_aligned_scatter(self, data: torch.Tensor) -> torch.Tensor:
if self.padding_flag:
pad_size = self.pad_size
padded_data = F.pad(data, (0, 0, 0, pad_size))
else:
padded_data = data
# padded_data = data
padded_data = torch.tensor_split(padded_data, self.tp_size, dim=0)
padded_data_reduce_scatter = padded_data[self.tp_rank_in_group]
return padded_data_reduce_scatter
def init_metadata_for_sp(input_ids, enable_sequence_parallelism):
if not enable_sequence_parallelism:
return MetadataForPadding(padding_flag=False,
not_dummy_and_is_prefill=False)
is_perifll = 0
attn_metadata = get_forward_context().attn_metadata
tp_size = get_tensor_model_parallel_world_size()
if attn_metadata is not None:
if hasattr(attn_metadata,
'is_only_prefill') and attn_metadata.is_only_prefill:
is_perifll = 1
if hasattr(attn_metadata,
'num_prefills') and attn_metadata.num_prefills > 0:
is_perifll = 1
if is_perifll:
lengths_sum_unpadding = input_ids.shape[0]
lengths_sum_padding = (
(lengths_sum_unpadding + tp_size - 1) // tp_size) * tp_size
if lengths_sum_unpadding == lengths_sum_padding:
padding_flag = False
else:
padding_flag = True
pad_size = lengths_sum_padding - lengths_sum_unpadding
_metadata_for_padding = MetadataForPadding(
lengths_sum_unpadding=lengths_sum_unpadding,
lengths_sum_padding=lengths_sum_padding,
padding_flag=padding_flag,
pad_size=pad_size,
not_dummy_and_is_prefill=True)
return _metadata_for_padding
return MetadataForPadding(padding_flag=False,
not_dummy_and_is_prefill=False)

View File

@ -195,6 +195,12 @@ class NPUPlatform(Platform):
ascend_config.ascend_scheduler_config)
vllm_config.scheduler_config = ascend_scheduler_config
if compilation_config.pass_config.enable_sequence_parallelism:
if not parallel_config.enable_expert_parallel or vllm_config.model_config.hf_config.model_type != "qwen3_moe":
raise NotImplementedError(
"For better performance in Qwen3 MoE, SP only works exclusively with MC2, AllToAll, and AllToAllV."
)
# register Ascend CustomOp
register_ascend_customop()

View File

@ -1160,6 +1160,10 @@ class NPUModelRunner(LoRAModelRunnerMixin):
with_prefill = attn_state not in [
AscendAttentionState.DecodeOnly, AscendAttentionState.SpecDecoding
]
is_only_prefill = bool(np.all(num_valid_tokens != 1))
extra_builder_kwargs['is_only_prefill'] = is_only_prefill
enable_dbo = self._check_dbo_is_valid(self.query_lens.tolist(),
attn_state,
total_num_scheduled_tokens)