[Test] Add accuracy test report workflow (#542)

### What this PR does / why we need it?
1. Provide accuracy test report for development branch release.
2. Models and datasets for accuracy test:
    
| Model | datasets |
|---------------------------- | --------------------------- | 
| Qwen2.5-7B-Instruct        |  ceval-val, gsm8k, mmlu  |
| Qwen3-8B                        |  ceval-val, gsm8k, mmlu  |
| Llama-3.1-8B-Instruct      |  ceval-val, gsm8k, mmlu  |
| Qwen2.5-VL-7B-Instruct  |           mmmu_val             |

### Does this PR introduce _any_ user-facing change?
This PR will display the accuracy test report of the release versionin
docs/source/developer_guide/accuracy_report。
Qwen2.5-7B-Instruct.md
Qwen3-8B.md
Llama-3.1-8B-Instruct.md
Qwen2.5-VL-7B-Instruct .md

Signed-off-by: hfadzxy <starmoon_zhang@163.com>
This commit is contained in:
hfadzxy
2025-04-30 14:53:58 +08:00
committed by GitHub
parent ba9714ccee
commit affca6f348
6 changed files with 587 additions and 2 deletions

View File

@ -2,4 +2,5 @@ self-hosted-runner:
# Labels of self-hosted runner in array of strings.
labels:
- linux-arm64-npu-1
- linux-arm64-npu-2
- linux-arm64-npu-4

150
.github/workflows/accuracy_report.yaml vendored Normal file
View File

@ -0,0 +1,150 @@
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
name: Accuracy Report
on:
workflow_dispatch:
inputs:
branch:
description: 'choose a dev branch to pr'
required: true
vllm-ascend-version:
description: 'what vllm-ascend version to accuracy test?'
required: true
type: string
jobs:
download:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
ref: ${{ github.event.inputs.branch }}
- name: Debug List Artifacts
run: gh api /repos/${{ github.repository }}/actions/artifacts
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Query artifact run id for Qwen2.5-VL-7B-Instruct V0 latest artifact
id: get_Qwen2_5_VL_7B_Instruct_latest_run_id_V0
run: |
ARTIFACT_JSON=$(gh api "repos/${{ github.repository }}/actions/artifacts")
RUN_ID=$(echo "$ARTIFACT_JSON" | \
jq -r '[.artifacts[] | select(.name=="${{ github.event.inputs.vllm-ascend-version }}-Qwen2.5-VL-7B-Instruct-V0-report")] | sort_by(.created_at) | last | .workflow_run.id')
echo "runid=$RUN_ID" >> "$GITHUB_OUTPUT"
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Query artifact run id for Qwen2.5-7B-Instruct V0 latest artifact
id: get_Qwen2_5_7B_Instruct_latest_run_id_V0
run: |
ARTIFACT_JSON=$(gh api "repos/${{ github.repository }}/actions/artifacts")
RUN_ID=$(echo "$ARTIFACT_JSON" | \
jq -r '[.artifacts[] | select(.name=="${{ github.event.inputs.vllm-ascend-version }}-Qwen2.5-7B-Instruct-V0-report")] | sort_by(.created_at) | last | .workflow_run.id')
echo "runid=$RUN_ID" >> "$GITHUB_OUTPUT"
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Query artifact run id for Llama-3.1-8B-Instruct V0 latest artifact
id: get_Llama_3_1_8B_Instruct_latest_run_id_V0
run: |
ARTIFACT_JSON=$(gh api "repos/${{ github.repository }}/actions/artifacts")
RUN_ID=$(echo "$ARTIFACT_JSON" | \
jq -r '[.artifacts[] | select(.name=="${{ github.event.inputs.vllm-ascend-version }}-Llama-3.1-8B-Instruct-V0-report")] | sort_by(.created_at) | last | .workflow_run.id')
echo "runid=$RUN_ID" >> "$GITHUB_OUTPUT"
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Query artifact run id for Qwen3-8B V0 latest artifact
id: get_Qwen3_8B_latest_run_id_V0
run: |
ARTIFACT_JSON=$(gh api "repos/${{ github.repository }}/actions/artifacts")
RUN_ID=$(echo "$ARTIFACT_JSON" | \
jq -r '[.artifacts[] | select(.name=="${{ github.event.inputs.vllm-ascend-version }}-Qwen3-8B-V0-report")] | sort_by(.created_at) | last | .workflow_run.id')
echo "runid=$RUN_ID" >> "$GITHUB_OUTPUT"
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
- name: Download Qwen/Qwen2.5-VL-7B-Instruct V0 Artifact
uses: actions/download-artifact@v4
with:
name: ${{ github.event.inputs.vllm-ascend-version }}-Qwen2.5-VL-7B-Instruct-V0-report
path: ./docs/source/developer_guide/evaluation/accuracy_report
github-token: ${{ secrets.GITHUB_TOKEN }}
repository: vllm-project/vllm-ascend
run-id: ${{ steps.get_Qwen2_5_VL_7B_Instruct_latest_run_id_V0.outputs.runid }}
- name: Download Qwen/Qwen2.5-7B-Instruct Artifact
uses: actions/download-artifact@v4
with:
name: ${{ github.event.inputs.vllm-ascend-version }}-Qwen2.5-7B-Instruct-V0-report
path: ./docs/source/developer_guide/evaluation/accuracy_report
github-token: ${{ secrets.GITHUB_TOKEN }}
repository: vllm-project/vllm-ascend
run-id: ${{ steps.get_Qwen2_5_7B_Instruct_latest_run_id_V0.outputs.runid }}
- name: Download meta-llama/Llama-3.1-8B-Instruct Artifact
uses: actions/download-artifact@v4
with:
name: ${{ github.event.inputs.vllm-ascend-version }}-Llama-3.1-8B-Instruct-V0-report
path: ./docs/source/developer_guide/evaluation/accuracy_report
github-token: ${{ secrets.GITHUB_TOKEN }}
repository: vllm-project/vllm-ascend
run-id: ${{ steps.get_Llama_3_1_8B_Instruct_latest_run_id_V0.outputs.runid }}
- name: Download Qwen/Qwen3-8B Artifact
uses: actions/download-artifact@v4
with:
name: ${{ github.event.inputs.vllm-ascend-version }}-Qwen3-8B-V0-report
path: ./docs/source/developer_guide/evaluation/accuracy_report
github-token: ${{ secrets.GITHUB_TOKEN }}
repository: vllm-project/vllm-ascend
run-id: ${{ steps.get_Qwen3_8B_latest_run_id_V0.outputs.runid }}
- name: Display Files
working-directory: ./docs/source/developer_guide/evaluation/accuracy_report
run: |
cat ./Qwen2.5-VL-7B-Instruct.md
cat ./Llama-3.1-8B-Instruct.md
cat ./Qwen2.5-7B-Instruct.md
cat ./Qwen3-8B.md
- name: Create Pull Request for markdown update
uses: peter-evans/create-pull-request@v7
with:
token: ${{ secrets.PR_TOKEN }}
base: ${{ github.ref_name }}
branch: auto-pr/accuracy-test
commit-message: "Update accuracy report for ${{ github.event.inputs.branch }}"
add-paths: ./docs/source/developer_guide/evaluation/accuracy_report/*.md
title: "[Doc]Update accuracy report for ${{ github.event.inputs.branch }}"
body: |
The accuracy results running on Ascend NPU have changed, I'm updating the report.
Please review the changes.
- [Workflow run][1]
- [Qwen2.5-7B-Instruct accuracy report][2]
- [Llama-3.1-8B-Instruct accuracy report][3]
- [Qwen2.5-VL-7B-Instruct accuracy report][4]
- [Qwen3-8B accuracy report][5]
[1]: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
[2]: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ steps.get_Qwen2_5_7B_Instruct_latest_run_id_V0.outputs.runid }}
[3]: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ steps.get_Llama_3_1_8B_Instruct_latest_run_id_V0.outputs.runid }}
[4]: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ steps.get_Qwen2_5_VL_7B_Instruct_latest_run_id_V0.outputs.runid }}
[5]: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ steps.get_Qwen3_8B_latest_run_id_V0.outputs.runid }}

203
.github/workflows/accuracy_test.yaml vendored Normal file
View File

@ -0,0 +1,203 @@
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
name: Accuracy Tests
on:
workflow_dispatch:
inputs:
vllm-version:
description: 'what vllm version to accuracy test?'
required: true
type: string
vllm-ascend-version:
description: 'what vllm-ascend version to accuracy test?'
required: true
type: string
models:
description: 'choose model(all/Qwen2.5-7B-Instruct/Llama-3.1-8B-Instruct/Qwen2.5-VL-7B-Instruct/Qwen3-8B)'
required: true
type: choice
options:
- all
- Qwen/Qwen2.5-7B-Instruct
- meta-llama/Llama-3.1-8B-Instruct
- Qwen/Qwen2.5-VL-7B-Instruct
- Qwen/Qwen3-8B
default: 'all'
# Bash shells do not use ~/.profile or ~/.bashrc so these shells need to be explicitly
# declared as "shell: bash -el {0}" on steps that need to be properly activated.
# It's used to activate ascend-toolkit environment variables.
defaults:
run:
shell: bash -el {0}
jobs:
model_tests:
name: Model Test - ${{ matrix.model_name }}
runs-on: 'linux-arm64-npu-2'
strategy:
matrix:
include: ${{ fromJSON(
(github.event.inputs.models == 'all' && '[{"model_name":"Qwen/Qwen2.5-7B-Instruct","output_file":"Qwen2.5-7B-Instruct"},{"model_name":"meta-llama/Llama-3.1-8B-Instruct","output_file":"Llama-3.1-8B-Instruct"},{"model_name":"Qwen/Qwen2.5-VL-7B-Instruct","output_file":"Qwen2.5-VL-7B-Instruct"}, {"model_name":"Qwen/Qwen3-8B","output_file":"Qwen3-8B"}]') ||
(github.event.inputs.models == 'Qwen/Qwen2.5-7B-Instruct' && '[{"model_name":"Qwen/Qwen2.5-7B-Instruct","output_file":"Qwen2.5-7B-Instruct"}]') ||
(github.event.inputs.models == 'meta-llama/Llama-3.1-8B-Instruct' && '[{"model_name":"meta-llama/Llama-3.1-8B-Instruct","output_file":"Llama-3.1-8B-Instruct"}]') ||
(github.event.inputs.models == 'Qwen/Qwen2.5-VL-7B-Instruct' && '[{"model_name":"Qwen/Qwen2.5-VL-7B-Instruct","output_file":"Qwen2.5-VL-7B-Instruct"}]') ||
(github.event.inputs.models == 'Qwen/Qwen3-8B' && '[{"model_name":"Qwen/Qwen3-8B","output_file":"Qwen3-8B"}]')
) }}
fail-fast: false
container:
image: quay.io/ascend/cann:8.0.0-910b-ubuntu22.04-py3.10
env:
HF_ENDPOINT: https://hf-mirror.com
HF_TOKEN: ${{ secrets.HF_TOKEN }}
DATASET_SOURCE: ModelScope
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Check npu and CANN info
run: |
npu-smi info
cat /usr/local/Ascend/ascend-toolkit/latest/"$(uname -i)"-linux/ascend_toolkit_install.info
- name: Config mirrors
run: |
sed -i 's|ports.ubuntu.com|mirrors.tuna.tsinghua.edu.cn|g' /etc/apt/sources.list
pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
apt-get update -y
apt install git -y
git config --global url."https://gh-proxy.test.osinfra.cn/https://github.com/".insteadOf https://github.com/
- name: Install system dependencies
run: |
apt-get -y install `cat packages.txt`
apt-get -y install gcc g++ cmake libnuma-dev
- name: Install system dependencies
run: |
apt-get -y install `cat packages.txt`
apt-get -y install gcc g++ cmake libnuma-dev
- name: Checkout vllm-project/vllm repo
uses: actions/checkout@v4
with:
repository: vllm-project/vllm
path: ./vllm-empty
ref: ${{ github.event.inputs.vllm-version }}
- name: Install vllm-project/vllm from source
working-directory: ./vllm-empty
run: VLLM_TARGET_DEVICE=empty pip install -e .
- name: Checkout vllm-project/vllm-ascend repo
uses: actions/checkout@v4
with:
repository: vllm-project/vllm-ascend
path: ./vllm-ascend
ref: ${{ github.event.inputs.vllm-ascend-version }}
fetch-depth: 0
- name: Install pta
run: |
if [ ! -d /root/.cache/pta ]; then
mkdir -p /root/.cache/pta
fi
if [ ! -f /root/.cache/pta/torch_npu-2.5.1.dev20250320-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ]; then
cd /root/.cache/pta
rm -rf pytorch_v2.5.1_py310*
wget https://pytorch-package.obs.cn-north-4.myhuaweicloud.com/pta/Daily/v2.5.1/20250320.3/pytorch_v2.5.1_py310.tar.gz
tar -zxvf pytorch_v2.5.1_py310.tar.gz
fi
pip install /root/.cache/pta/torch_npu-2.5.1.dev20250320-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- name: Install vllm-project/vllm-ascend
working-directory: ./vllm-ascend
run: |
pip install -r requirements-dev.txt
pip install -e .
- name: Checkout EleutherAI/lm-evaluation-harness repo
uses: actions/checkout@v4
with:
repository: EleutherAI/lm-evaluation-harness
path: ./lm-eval
fetch-depth: 0
- name: Install EleutherAI/lm-evaluation-harness
working-directory: ./lm-eval
run: |
pip install -e .
pip install ray datasets==2.16.0 transformers==4.50.3 huggingface-hub==0.29.3
- name: Collect version info
run: |
for dir in /usr/local/Ascend/ascend-toolkit/*; do
dname=$(basename "$dir")
if [ "$dname" != "latest" ]; then
TOOLKIT_DIR="$dname"
break
fi
done
INFO_FILE="/usr/local/Ascend/ascend-toolkit/${TOOLKIT_DIR}/$(uname -i)-linux/ascend_toolkit_install.info"
CANN_VERSION=$(grep "version=" "$INFO_FILE" \
| head -n1 \
| cut -d'=' -f2 \
| tr -d '"')
{
echo "CANN_VERSION=$CANN_VERSION"
pip show torch | grep "Version:" | awk '{print "TORCH_VERSION="$2}'
pip show torch_npu | grep "Version:" | awk '{print "TORCH_NPU_VERSION="$2}'
pip show vllm | grep "Version:" | awk '{print "VLLM_VERSION="$2}' | sed 's/+.*//'
} >> "$GITHUB_ENV"
- name: Print versions
run: |
echo "CANN: ${{ env.CANN_VERSION }}"
echo "Torch NPU: ${{ env.TORCH_NPU_VERSION }}"
echo "Torch: ${{ env.TORCH_VERSION }}"
echo "vLLM: ${{ env.VLLM_VERSION }}"
- name: Run Accuracy Test for V0
working-directory: ./benchmarks
env:
VLLM_USE_V1: 0
PYTORCH_NPU_ALLOC_CONF: max_split_size_mb:256
run: |
mkdir -p ./accuracy/V0
python ./scripts/run_accuracy.py \
--model "${{ matrix.model_name }}" \
--output "./accuracy/V0/${{ matrix.output_file }}.md" \
--vllm_ascend_version "${{ github.event.inputs.vllm-ascend-version }}" \
--cann_version "${{ env.CANN_VERSION }}" \
--torch_npu_version "${{ env.TORCH_NPU_VERSION }}" \
--torch_version "${{ env.TORCH_VERSION }}" \
--vllm_version "${{ env.VLLM_VERSION }}"
- name: Upload Report for V0
uses: actions/upload-artifact@v4
with:
name: "${{ github.event.inputs.vllm-ascend-version }}-${{ matrix.output_file }}-V0-report"
path: ./benchmarks/accuracy/V0/${{ matrix.output_file }}.md
if-no-files-found: warn
retention-days: 90
overwrite: true

View File

@ -0,0 +1,231 @@
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
import argparse
import gc
import json
import multiprocessing
import sys
from multiprocessing import Queue
import lm_eval
import torch
UNIMODAL_MODEL_NAME = [
"Qwen/Qwen2.5-7B-Instruct", "meta-llama/Llama-3.1-8B-Instruct",
"Qwen/Qwen3-8B"
]
UNIMODAL_TASK = ["ceval-valid", "mmlu", "gsm8k"]
MULTIMODAL_NAME = ["Qwen/Qwen2.5-VL-7B-Instruct"]
MULTIMODAL_TASK = ["mmmu_val"]
batch_size_dict = {"ceval-valid": 1, "mmlu": 1, "gsm8k": "auto", "mmmu_val": 1}
MODEL_RUN_INFO = {
"Qwen/Qwen2.5-7B-Instruct":
("export MODEL_AEGS='{model}, max_model_len=4096,dtype=auto,tensor_parallel_size=2,gpu_memory_utilization=0.6'\n"
"lm_eval --model vllm --modlel_args $MODEL_ARGS --tasks {datasets} \ \n"
"--apply_chat_template --fewshot_as_multiturn --num_fewshot 5 --batch_size 1"
),
"LLM-Research/Meta-Llama-3.1-8B-Instruct":
("export MODEL_AEGS='{model}, max_model_len=4096,dtype=auto,tensor_parallel_size=2,gpu_memory_utilization=0.6'\n"
"lm_eval --model vllm --modlel_args $MODEL_ARGS --tasks {datasets} \ \n"
"--apply_chat_template --fewshot_as_multiturn --num_fewshot 5 --batch_size 1"
),
"Qwen/Qwen3-8B":
("export MODEL_AEGS='{model}, max_model_len=4096,dtype=auto,tensor_parallel_size=2,gpu_memory_utilization=0.6'\n"
"lm_eval --model vllm --modlel_args $MODEL_ARGS --tasks {datasets} \ \n"
"--apply_chat_template --fewshot_as_multiturn --num_fewshot 5 --batch_size 1"
),
"Qwen/Qwen2.5-VL-7B-Instruct":
("export MODEL_AEGS='{model}, max_model_len=8192,dtype=auto,tensor_parallel_size=2,max_images=2'\n"
"lm_eval --model vllm-vlm --modlel_args $MODEL_ARGS --tasks {datasets} \ \n"
"--apply_chat_template --fewshot_as_multiturn --batch_size 1"),
}
def run_accuracy_unimodal(queue, model, dataset):
try:
model_args = f"pretrained={model},max_model_len=4096,dtype=auto,tensor_parallel_size=2,gpu_memory_utilization=0.6"
results = lm_eval.simple_evaluate(
model="vllm",
model_args=model_args,
tasks=dataset,
apply_chat_template=True,
fewshot_as_multiturn=True,
batch_size=batch_size_dict[dataset],
num_fewshot=5,
)
print(f"Success: {model} on {dataset}")
measured_value = results["results"]
queue.put(measured_value)
except Exception as e:
print(f"Error in run_accuracy_unimodal: {e}")
queue.put(e)
sys.exit(1)
finally:
torch.npu.empty_cache()
gc.collect()
def run_accuracy_multimodal(queue, model, dataset):
try:
model_args = f"pretrained={model},max_model_len=8192,dtype=auto,tensor_parallel_size=2,max_images=2"
results = lm_eval.simple_evaluate(
model="vllm-vlm",
model_args=model_args,
tasks=dataset,
apply_chat_template=True,
fewshot_as_multiturn=True,
batch_size=batch_size_dict[dataset],
)
print(f"Success: {model} on {dataset}")
measured_value = results["results"]
queue.put(measured_value)
except Exception as e:
print(f"Error in run_accuracy_multimodal: {e}")
queue.put(e)
sys.exit(1)
finally:
torch.npu.empty_cache()
gc.collect()
def generate_md(model_name, tasks_list, args, datasets):
run_cmd = MODEL_RUN_INFO[model_name].format(model=model_name,
datasets=datasets)
model = model_name.split("/")[1]
preamble = f"""# {model} Accuracy Test
<div>
<strong>vLLM version:</strong> vLLM: {args.vllm_version}, vLLM Ascend: {args.vllm_ascend_version} <br>
</div>
<div>
<strong>Software Environment:</strong> CANN: {args.cann_version}, PyTorch: {args.torch_version}, torch-npu: {args.torch_npu_version} <br>
</div>
<div>
<strong>Hardware Environment</strong>: Atlas A2 Series <br>
</div>
<div>
<strong>Datasets</strong>: {datasets} <br>
</div>
<div>
<strong>Command</strong>:
```bash
{run_cmd}
```
</div>
<div>&nbsp;</div>
"""
header = (
"| Task | Filter | n-shot | Metric | Value | Stderr |\n"
"|-----------------------|-------:|-------:|----------|--------:|-------:|"
)
rows = []
rows_sub = []
for task_dict in tasks_list:
for key, stats in task_dict.items():
alias = stats.get("alias", key)
task_name = alias.strip()
if "exact_match,flexible-extract" in stats:
metric_key = "exact_match,flexible-extract"
else:
metric_key = None
for k in stats:
if "," in k and not k.startswith("acc_stderr"):
metric_key = k
break
if metric_key is None:
continue
metric, flt = metric_key.split(",", 1)
value = stats[metric_key]
stderr = stats.get(f"{metric}_stderr,{flt}", 0)
if model_name in UNIMODAL_MODEL_NAME:
n_shot = "5"
else:
n_shot = "0"
row = (f"| {task_name:<37} "
f"| {flt:<6} "
f"| {n_shot:6} "
f"| {metric:<6} "
f"| ↑ {value:>5.4f} "
f"| ± {stderr:>5.4f} |")
if not task_name.startswith("-"):
rows.append(row)
rows_sub.append("<details>" + "\n" + "<summary>" + task_name +
" details" + "</summary>" + "\n" * 2 + header)
rows_sub.append(row)
rows_sub.append("</details>")
md = preamble + "\n" + header + "\n" + "\n".join(rows) + "\n" + "\n".join(
rows_sub) + "\n"
print(md)
return md
def safe_md(args, accuracy, datasets):
data = json.loads(json.dumps(accuracy))
for model_key, tasks_list in data.items():
md_content = generate_md(model_key, tasks_list, args, datasets)
with open(args.output, "w", encoding="utf-8") as f:
f.write(md_content)
print(f"create Markdown file:{args.output}")
def main(args):
accuracy = {}
accuracy[args.model] = []
result_queue: Queue[float] = multiprocessing.Queue()
if args.model in UNIMODAL_MODEL_NAME:
datasets = ",".join(UNIMODAL_TASK)
for dataset in UNIMODAL_TASK:
p = multiprocessing.Process(target=run_accuracy_unimodal,
args=(result_queue, args.model,
dataset))
p.start()
p.join()
result = result_queue.get()
print(result)
accuracy[args.model].append(result)
if args.model in MULTIMODAL_NAME:
datasets = ",".join(MULTIMODAL_TASK)
for dataset in MULTIMODAL_TASK:
p = multiprocessing.Process(target=run_accuracy_multimodal,
args=(result_queue, args.model,
dataset))
p.start()
p.join()
result = result_queue.get()
print(result)
accuracy[args.model].append(result)
print(accuracy)
safe_md(args, accuracy, datasets)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--output", type=str, required=True)
parser.add_argument("--model", type=str, required=True)
parser.add_argument("--vllm_ascend_version", type=str, required=False)
parser.add_argument("--torch_version", type=str, required=False)
parser.add_argument("--torch_npu_version", type=str, required=False)
parser.add_argument("--vllm_version", type=str, required=False)
parser.add_argument("--cann_version", type=str, required=False)
args = parser.parse_args()
main(args)

View File

@ -3,8 +3,8 @@
:::{toctree}
:caption: Accuracy
:maxdepth: 1
using_opencompass
using_lm_eval
using_opencompass
using_evalscope
:::

View File

@ -52,7 +52,7 @@ user_guide/release_notes
% How to contribute to the vLLM Ascend project
:::{toctree}
:caption: Developer Guide
:maxdepth: 2
:maxdepth: 1
developer_guide/contributing
developer_guide/versioning_policy
developer_guide/evaluation/index