mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
[CI][Benchmark] Optimize performance benchmark workflow (#1039)
### What this PR does / why we need it? This is a post patch of #1014, for some convenience optimization - Set cached dataset path for speed - Use pypi to install escli-tool - Add benchmark results convert script to have a developer-friendly result - Patch the `benchmark_dataset.py` to disable streaming load for internet - Add more trigger ways for different purpose, `pr` for debug, `schedule` for daily test, `dispatch` and `pr-labled` for manual testing of a single(current) commit - Disable latency test for `qwen-2.5-vl`, (This script does not support multi-modal yet) ### Does this PR introduce _any_ user-facing change? No ### How was this patch tested? CI passed --------- Signed-off-by: wangli <wangli858794774@gmail.com>
This commit is contained in:
60
.github/workflows/nightly_benchmarks.yaml
vendored
60
.github/workflows/nightly_benchmarks.yaml
vendored
@ -15,21 +15,17 @@
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
name: 'run benchmarks main'
|
||||
name: 'Benchmarks / Performance'
|
||||
# This workflow runs nightly benchmarks for vllm-ascend.
|
||||
|
||||
on:
|
||||
schedule:
|
||||
# Run at 24:00 everyday
|
||||
- cron: '00 16 * * *'
|
||||
workflow_dispatch:
|
||||
|
||||
# after merged, secrets will be available
|
||||
# pull_request:
|
||||
# branches:
|
||||
# - 'main'
|
||||
# - '*-dev'
|
||||
# paths:
|
||||
# - '.github/workflows/nightly_benchmarks.yaml'
|
||||
|
||||
pull_request:
|
||||
types: [ labeled ]
|
||||
|
||||
# Bash shells do not use ~/.profile or ~/.bashrc so these shells need to be explicitly
|
||||
# declared as "shell: bash -el {0}" on steps that need to be properly activated.
|
||||
@ -38,9 +34,15 @@ defaults:
|
||||
run:
|
||||
shell: bash -el {0}
|
||||
|
||||
concurrency:
|
||||
group: pr-${{ github.event.pull_request.number }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
test:
|
||||
name: run benchmarks main
|
||||
if: ${{ contains(github.event.pull_request.labels.*.name, 'performance-test') && contains(github.event.pull_request.labels.*.name, 'ready-for-test') || github.event_name == 'schedule' }}
|
||||
|
||||
name: Benchmarks/vLLM=${{ matrix.vllm_branch }}, vLLM-Ascend=${{ matrix.vllm_ascend_branch }}
|
||||
runs-on: 'linux-arm64-npu-static-8'
|
||||
strategy:
|
||||
matrix:
|
||||
@ -85,13 +87,10 @@ jobs:
|
||||
run: |
|
||||
git config --global --add safe.directory "$GITHUB_WORKSPACE"
|
||||
git config --global url."https://gh-proxy.test.osinfra.cn/https://github.com/".insteadOf https://github.com/
|
||||
|
||||
|
||||
- name: Checkout vllm-project/vllm-ascend repo
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ matrix.vllm_ascend_branch }}
|
||||
|
||||
|
||||
- name: Checkout vllm-project/vllm repo
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
@ -109,25 +108,44 @@ jobs:
|
||||
pip install -e .
|
||||
pip install -r benchmarks/requirements-bench.txt
|
||||
|
||||
- name: Checkout cosdt/elastic-tool
|
||||
uses: actions/checkout@v4
|
||||
- name: Run current commit benchmarks
|
||||
if: github.event_name != 'schedule'
|
||||
run: |
|
||||
# Sometimes we only want to run benchmarks on the current commit
|
||||
# This is useful for debugging or a release benchmark
|
||||
bash benchmarks/scripts/run-performance-benchmarks.sh
|
||||
# Convert the benchmark results to markdown format
|
||||
python3 benchmarks/scripts/convert_json_to_markdown.py
|
||||
|
||||
- name: Generate step summary
|
||||
if: github.event_name != 'schedule'
|
||||
run: |
|
||||
cat ./benchmarks/results/benchmark_results.md >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
- name: Upload benchmark artifacts
|
||||
if: github.event_name != 'schedule'
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
repository: cosdt/elastic-tool
|
||||
path: ./elastic_tool
|
||||
ref: 0.1.0-dev
|
||||
name: "benchmark-performance-${{ matrix.vllm_branch }}-${{ matrix.vllm_ascend_branch }}-report"
|
||||
path: ./benchmarks/results/benchmark_results.md
|
||||
if-no-files-found: warn
|
||||
retention-days: 90
|
||||
overwrite: true
|
||||
|
||||
- name: Install elastic_tool
|
||||
working-directory: ./elastic_tool
|
||||
if: github.event_name == 'schedule'
|
||||
run: |
|
||||
pip install -e .
|
||||
pip install escli-tool==0.2.0
|
||||
|
||||
- name: Collect pr info from vllm-project/vllm-ascend
|
||||
if: github.event_name == 'schedule'
|
||||
run: |
|
||||
# Only get the pull request which may influences performance
|
||||
git log --pretty=format:"%H %s" -- '**/*.py' ':!docs/*' ':!tests/*' ':!examples/*' > commit_log.txt
|
||||
escli check commit_log.txt
|
||||
|
||||
- name: Run benchmark iteration
|
||||
if: github.event_name == 'schedule'
|
||||
run: |
|
||||
while IFS= read -r line || [[ -n "$line" ]]; do
|
||||
commit_id=${line%% *}
|
||||
|
@ -1,3 +1,5 @@
|
||||
pandas
|
||||
datasets
|
||||
modelscope
|
||||
modelscope
|
||||
libcst
|
||||
tabulate
|
183
benchmarks/scripts/convert_json_to_markdown.py
Normal file
183
benchmarks/scripts/convert_json_to_markdown.py
Normal file
@ -0,0 +1,183 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import pandas as pd
|
||||
from tabulate import tabulate
|
||||
|
||||
CUR_PATH = Path(__file__).parent.resolve()
|
||||
# latency results and the keys that will be printed into markdown
|
||||
latency_results = []
|
||||
latency_column_mapping = {
|
||||
"test_name": "Test name",
|
||||
"avg_latency": "Mean latency (ms)",
|
||||
"P50": "Median latency (ms)",
|
||||
"P99": "P99 latency (ms)",
|
||||
}
|
||||
|
||||
# throughput tests and the keys that will be printed into markdown
|
||||
throughput_results = []
|
||||
throughput_results_column_mapping = {
|
||||
"test_name": "Test name",
|
||||
"num_requests": "Num of reqs",
|
||||
"total_num_tokens": "Total num of tokens",
|
||||
"elapsed_time": "Elapsed time (s)",
|
||||
"requests_per_second": "Tput (req/s)",
|
||||
"tokens_per_second": "Tput (tok/s)",
|
||||
}
|
||||
|
||||
# serving results and the keys that will be printed into markdown
|
||||
serving_results = []
|
||||
serving_column_mapping = {
|
||||
"test_name": "Test name",
|
||||
"request_rate": "Request rate (req/s)",
|
||||
"request_throughput": "Tput (req/s)",
|
||||
"output_throughput": "Output Tput (tok/s)",
|
||||
"median_ttft_ms": "TTFT (ms)",
|
||||
"median_tpot_ms": "TPOT (ms)",
|
||||
"median_itl_ms": "ITL (ms)",
|
||||
}
|
||||
|
||||
|
||||
def read_markdown(file):
|
||||
if os.path.exists(file):
|
||||
with open(file) as f:
|
||||
return f.read() + "\n"
|
||||
else:
|
||||
return f"{file} not found.\n"
|
||||
|
||||
|
||||
def results_to_json(latency, throughput, serving):
|
||||
return json.dumps({
|
||||
'latency': latency.to_dict(),
|
||||
'throughput': throughput.to_dict(),
|
||||
'serving': serving.to_dict()
|
||||
})
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Process the results of the benchmark tests.")
|
||||
parser.add_argument(
|
||||
"--results_folder",
|
||||
type=str,
|
||||
default="../results/",
|
||||
help="The folder where the benchmark results are stored.")
|
||||
parser.add_argument(
|
||||
"--output_folder",
|
||||
type=str,
|
||||
default="../results/",
|
||||
help="The folder where the benchmark results are stored.")
|
||||
parser.add_argument("--markdown_template",
|
||||
type=str,
|
||||
default="./perf_result_template.md",
|
||||
help="The template file for the markdown report.")
|
||||
parser.add_argument("--tag",
|
||||
default="main",
|
||||
help="Tag to be used for release message.")
|
||||
parser.add_argument("--commit_id",
|
||||
default="",
|
||||
help="Commit ID to be used for release message.")
|
||||
|
||||
args = parser.parse_args()
|
||||
results_folder = (CUR_PATH / args.results_folder).resolve()
|
||||
output_folder = (CUR_PATH / args.output_folder).resolve()
|
||||
markdown_template = (CUR_PATH / args.markdown_template).resolve()
|
||||
|
||||
# collect results
|
||||
for test_file in results_folder.glob("*.json"):
|
||||
|
||||
with open(test_file) as f:
|
||||
raw_result = json.loads(f.read())
|
||||
|
||||
if "serving" in str(test_file):
|
||||
# this result is generated via `benchmark_serving.py`
|
||||
|
||||
# update the test name of this result
|
||||
raw_result.update({"test_name": test_file.stem})
|
||||
|
||||
# add the result to raw_result
|
||||
serving_results.append(raw_result)
|
||||
continue
|
||||
|
||||
elif "latency" in f.name:
|
||||
# this result is generated via `benchmark_latency.py`
|
||||
|
||||
# update the test name of this result
|
||||
raw_result.update({"test_name": test_file.stem})
|
||||
|
||||
# get different percentiles
|
||||
for perc in [10, 25, 50, 75, 90, 99]:
|
||||
# Multiply 1000 to convert the time unit from s to ms
|
||||
raw_result.update(
|
||||
{f"P{perc}": 1000 * raw_result["percentiles"][str(perc)]})
|
||||
raw_result["avg_latency"] = raw_result["avg_latency"] * 1000
|
||||
|
||||
# add the result to raw_result
|
||||
latency_results.append(raw_result)
|
||||
continue
|
||||
|
||||
elif "throughput" in f.name:
|
||||
# this result is generated via `benchmark_throughput.py`
|
||||
|
||||
# update the test name of this result
|
||||
raw_result.update({"test_name": test_file.stem})
|
||||
|
||||
# add the result to raw_result
|
||||
throughput_results.append(raw_result)
|
||||
continue
|
||||
|
||||
print(f"Skipping {test_file}")
|
||||
serving_results.sort(key=lambda x: (len(x['test_name']), x['test_name']))
|
||||
|
||||
latency_results = pd.DataFrame.from_dict(latency_results)
|
||||
serving_results = pd.DataFrame.from_dict(serving_results)
|
||||
throughput_results = pd.DataFrame.from_dict(throughput_results)
|
||||
|
||||
raw_results_json = results_to_json(latency_results, throughput_results,
|
||||
serving_results)
|
||||
|
||||
# remapping the key, for visualization purpose
|
||||
if not latency_results.empty:
|
||||
latency_results = latency_results[list(
|
||||
latency_column_mapping.keys())].rename(
|
||||
columns=latency_column_mapping)
|
||||
if not serving_results.empty:
|
||||
serving_results = serving_results[list(
|
||||
serving_column_mapping.keys())].rename(
|
||||
columns=serving_column_mapping)
|
||||
if not throughput_results.empty:
|
||||
throughput_results = throughput_results[list(
|
||||
throughput_results_column_mapping.keys())].rename(
|
||||
columns=throughput_results_column_mapping)
|
||||
|
||||
processed_results_json = results_to_json(latency_results,
|
||||
throughput_results,
|
||||
serving_results)
|
||||
|
||||
# get markdown tables
|
||||
latency_md_table = tabulate(latency_results,
|
||||
headers='keys',
|
||||
tablefmt='pipe',
|
||||
showindex=False)
|
||||
serving_md_table = tabulate(serving_results,
|
||||
headers='keys',
|
||||
tablefmt='pipe',
|
||||
showindex=False)
|
||||
throughput_md_table = tabulate(throughput_results,
|
||||
headers='keys',
|
||||
tablefmt='pipe',
|
||||
showindex=False)
|
||||
|
||||
# document the result
|
||||
print(output_folder)
|
||||
with open(output_folder / "benchmark_results.md", "w") as f:
|
||||
|
||||
results = read_markdown(markdown_template)
|
||||
results = results.format(
|
||||
latency_tests_markdown_table=latency_md_table,
|
||||
throughput_tests_markdown_table=throughput_md_table,
|
||||
serving_tests_markdown_table=serving_md_table,
|
||||
benchmarking_results_in_json_string=processed_results_json)
|
||||
f.write(results)
|
68
benchmarks/scripts/patch_benchmark_dataset.py
Normal file
68
benchmarks/scripts/patch_benchmark_dataset.py
Normal file
@ -0,0 +1,68 @@
|
||||
from argparse import ArgumentParser
|
||||
|
||||
import libcst as cst
|
||||
import libcst.matchers as m
|
||||
|
||||
# Patch the benchmark_dataset.py file to set streaming=False in load_dataset calls
|
||||
|
||||
|
||||
# TDOO(Potabk): Remove this patch when the issue is fixed in the upstream
|
||||
class StreamingFalseTransformer(cst.CSTTransformer):
|
||||
|
||||
def __init__(self):
|
||||
self.in_target_class = False
|
||||
self.in_target_func = False
|
||||
|
||||
def visit_ClassDef(self, node):
|
||||
if node.name.value == "HuggingFaceDataset":
|
||||
self.in_target_class = True
|
||||
|
||||
def leave_ClassDef(self, original_node, updated_node):
|
||||
self.in_target_class = False
|
||||
return updated_node
|
||||
|
||||
def visit_FunctionDef(self, node):
|
||||
if self.in_target_class and node.name.value == "load_data":
|
||||
self.in_target_func = True
|
||||
|
||||
def leave_FunctionDef(self, original_node, updated_node):
|
||||
self.in_target_func = False
|
||||
return updated_node
|
||||
|
||||
def leave_Call(self, original_node, updated_node):
|
||||
if self.in_target_class and self.in_target_func:
|
||||
if m.matches(updated_node.func, m.Name("load_dataset")):
|
||||
new_args = []
|
||||
for arg in updated_node.args:
|
||||
if arg.keyword and arg.keyword.value == "streaming":
|
||||
new_arg = arg.with_changes(value=cst.Name("False"))
|
||||
new_args.append(new_arg)
|
||||
else:
|
||||
new_args.append(arg)
|
||||
return updated_node.with_changes(args=new_args)
|
||||
return updated_node
|
||||
|
||||
|
||||
def patch_file(path):
|
||||
with open(path, "r", encoding="utf-8") as f:
|
||||
source = f.read()
|
||||
|
||||
module = cst.parse_module(source)
|
||||
modified = module.visit(StreamingFalseTransformer())
|
||||
|
||||
with open(path, "w", encoding="utf-8") as f:
|
||||
f.write(modified.code)
|
||||
|
||||
print(f"Patched: {path}")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = ArgumentParser(
|
||||
description=
|
||||
"Patch benchmark_dataset.py to set streaming=False in load_dataset calls"
|
||||
)
|
||||
parser.add_argument("--path",
|
||||
type=str,
|
||||
help="Path to the benchmark_dataset.py file")
|
||||
args = parser.parse_args()
|
||||
patch_file(args.path)
|
31
benchmarks/scripts/perf_result_template.md
Normal file
31
benchmarks/scripts/perf_result_template.md
Normal file
@ -0,0 +1,31 @@
|
||||
## Online serving tests
|
||||
|
||||
- Input length: randomly sample 200 prompts from [ShareGPT](https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split.json) and [lmarena-ai/vision-arena-bench-v0.1](https://huggingface.co/datasets/lmarena-ai/vision-arena-bench-v0.1/tree/main)(multi-modal) dataset (with fixed random seed).
|
||||
- Output length: the corresponding output length of these 200 prompts.
|
||||
- Batch size: dynamically determined by vllm and the arrival pattern of the requests.
|
||||
- **Average QPS (query per second)**: 1, 4, 16 and inf. QPS = inf means all requests come at once. For other QPS values, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
|
||||
- Models: Qwen/Qwen3-8B, Qwen/Qwen2.5-VL-7B-Instruct
|
||||
- Evaluation metrics: throughput, TTFT (median time to the first token ), ITL (median inter-token latency) TPOT(median time per output token).
|
||||
|
||||
{serving_tests_markdown_table}
|
||||
|
||||
## Offline tests
|
||||
### Latency tests
|
||||
|
||||
- Input length: 32 tokens.
|
||||
- Output length: 128 tokens.
|
||||
- Batch size: fixed (8).
|
||||
- Models: Qwen/Qwen3-8B, Qwen/Qwen2.5-VL-7B-Instruct
|
||||
- Evaluation metrics: end-to-end latency.
|
||||
|
||||
{latency_tests_markdown_table}
|
||||
|
||||
### Throughput tests
|
||||
|
||||
- Input length: randomly sample 200 prompts from [ShareGPT](https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/blob/main/ShareGPT_V3_unfiltered_cleaned_split.json) and [lmarena-ai/vision-arena-bench-v0.1](https://huggingface.co/datasets/lmarena-ai/vision-arena-bench-v0.1/tree/main)(multi-modal) dataset (with fixed random seed).
|
||||
- Output length: the corresponding output length of these 200 prompts.
|
||||
- Batch size: dynamically determined by vllm to achieve maximum throughput.
|
||||
- Models: Qwen/Qwen3-8B, Qwen/Qwen2.5-VL-7B-Instruct
|
||||
- Evaluation metrics: throughput.
|
||||
|
||||
{throughput_tests_markdown_table}
|
@ -1,6 +1,5 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
check_npus() {
|
||||
# shellcheck disable=SC2155
|
||||
@ -19,10 +18,19 @@ check_npus() {
|
||||
}
|
||||
|
||||
ensure_sharegpt_downloaded() {
|
||||
local FILE=ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
local FILE="/github/home/.cache/datasets/ShareGPT_V3_unfiltered_cleaned_split.json"
|
||||
local DIR
|
||||
DIR=$(dirname "$FILE")
|
||||
|
||||
if [ ! -f "$FILE" ]; then
|
||||
echo "$FILE not found, downloading from hf-mirror ..."
|
||||
wget https://hf-mirror.com/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/$FILE
|
||||
mkdir -p "$DIR"
|
||||
wget -O "$FILE" https://hf-mirror.com/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Download failed!" >&2
|
||||
return 1
|
||||
fi
|
||||
echo "Download completed and saved to $FILE"
|
||||
else
|
||||
echo "$FILE already exists."
|
||||
fi
|
||||
@ -49,7 +57,8 @@ wait_for_server() {
|
||||
# wait for vllm server to start
|
||||
# return 1 if vllm server crashes
|
||||
timeout 1200 bash -c '
|
||||
until curl -s -X POST localhost:8000/v1/completions || curl -s -X POST localhost:8000/v1/chat/completions; do
|
||||
until curl -s -X GET localhost:8000/health; do
|
||||
echo "Waiting for vllm server to start..."
|
||||
sleep 1
|
||||
done' && return 0 || return 1
|
||||
}
|
||||
@ -290,6 +299,7 @@ main() {
|
||||
# prepare for benchmarking
|
||||
cd benchmarks || exit 1
|
||||
get_benchmarks_scripts
|
||||
python3 scripts/patch_benchmark_dataset.py --path vllm_benchmarks/benchmark_dataset.py
|
||||
trap cleanup EXIT
|
||||
|
||||
QUICK_BENCHMARK_ROOT=./
|
||||
|
@ -1,14 +1,4 @@
|
||||
[
|
||||
{
|
||||
"test_name": "latency_qwen2_5vl_7B_tp1",
|
||||
"parameters": {
|
||||
"model": "Qwen/Qwen2.5-VL-7B-Instruct",
|
||||
"tensor_parallel_size": 1,
|
||||
"max_model_len": 16384,
|
||||
"num_iters_warmup": 5,
|
||||
"num_iters": 15
|
||||
}
|
||||
},
|
||||
{
|
||||
"test_name": "latency_qwen3_8B_tp1",
|
||||
"parameters": {
|
||||
|
@ -46,7 +46,7 @@
|
||||
"model": "Qwen/Qwen3-8B",
|
||||
"backend": "vllm",
|
||||
"dataset_name": "sharegpt",
|
||||
"dataset_path": "/root/.cache/datasets/sharegpt/ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"dataset_path": "/github/home/.cache/datasets/ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200
|
||||
}
|
||||
}
|
||||
|
@ -5,7 +5,7 @@
|
||||
"model": "Qwen/Qwen3-8B",
|
||||
"tensor_parallel_size": 1,
|
||||
"load_format": "dummy",
|
||||
"dataset_path": "/root/.cache/datasets/sharegpt/ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"dataset_path": "/github/home/.cache/datasets/ShareGPT_V3_unfiltered_cleaned_split.json",
|
||||
"num_prompts": 200,
|
||||
"backend": "vllm"
|
||||
}
|
||||
|
Reference in New Issue
Block a user