mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
[Bugfix] Fix accuracy problem caused by mask pollution (#1678)
### What this PR does / why we need it?
If a small batch of short requests is sent first, forming a chunk with a
length <128, it will corrupt the `attn_mask_cache`, causing subsequent
requests that do not form a chunk to have accuracy issues.
The root cause of this problem is the use of in-place multiplication.
Modifying it to use out-of-place multiplication will resolve the
accuracy problem.
### Does this PR introduce _any_ user-facing change?
No
### How was this patch tested?
Yes.
- vLLM version: v0.9.2
- vLLM main:
ad6c2e1a0b
---------
Signed-off-by: ApsarasX <apsarax@outlook.com>
This commit is contained in:
@ -105,3 +105,52 @@ class TestAttentionMaskBuilder(TestBase):
|
||||
device=torch.device("cpu"),
|
||||
)
|
||||
self.assertEqual(attn_mask.shape, (1, 512))
|
||||
|
||||
def test_use_multiple_masks(self):
|
||||
max_seq_lens = [128, 512, 1024]
|
||||
dtypes = [torch.float16, torch.bfloat16, torch.int8]
|
||||
for max_seq_len, dtype in zip(max_seq_lens, dtypes):
|
||||
with self.subTest(max_seq_len=max_seq_len, dtype=dtype):
|
||||
self._test_use_multiple_masks(max_seq_len, dtype)
|
||||
|
||||
def _test_use_multiple_masks(self, max_seq_len, dtype):
|
||||
expected_mask_value = torch.finfo(
|
||||
torch.float32).min if dtype == torch.float16 else 1
|
||||
if dtype == torch.float16:
|
||||
expected_splitfuse_mask_value = expected_mask_value
|
||||
elif dtype == torch.bfloat16:
|
||||
expected_splitfuse_mask_value = -10000
|
||||
else:
|
||||
assert dtype == torch.int8, "Unsupported dtype for attention mask"
|
||||
expected_splitfuse_mask_value = -16
|
||||
|
||||
attention_mask_builder = AttentionMaskBuilder(max_seq_len=max_seq_len,
|
||||
dtype=dtype)
|
||||
|
||||
splitfuse_attn_mask = attention_mask_builder.get_splitfuse_attn_mask(
|
||||
seq_lens=[max_seq_len],
|
||||
query_lens=[max_seq_len],
|
||||
position=torch.tensor([0]),
|
||||
dtype=dtype,
|
||||
device=torch.device("cpu"),
|
||||
)
|
||||
self.assertEqual(splitfuse_attn_mask.shape, (1, max_seq_len))
|
||||
self.assertEqual(
|
||||
splitfuse_attn_mask[0][-1],
|
||||
torch.tensor(expected_splitfuse_mask_value, dtype=dtype))
|
||||
self.assertEqual(attention_mask_builder._seq_len_cached, max_seq_len)
|
||||
self.assertEqual(attention_mask_builder.attn_mask_cache.shape,
|
||||
(max_seq_len, max_seq_len))
|
||||
self.assertEqual(attention_mask_builder.attn_mask_cache[0][-1],
|
||||
torch.tensor(expected_mask_value, dtype=dtype))
|
||||
|
||||
attn_mask = attention_mask_builder.get_attn_mask(
|
||||
max_seq_len=max_seq_len, dtype=dtype, device=torch.device("cpu"))
|
||||
self.assertEqual(attn_mask.shape, (max_seq_len, max_seq_len))
|
||||
self.assertEqual(attn_mask[0][-1],
|
||||
torch.tensor(expected_mask_value, dtype=dtype))
|
||||
self.assertEqual(attention_mask_builder._seq_len_cached, max_seq_len)
|
||||
self.assertEqual(attention_mask_builder.attn_mask_cache.shape,
|
||||
(max_seq_len, max_seq_len))
|
||||
self.assertEqual(attention_mask_builder.attn_mask_cache[0][-1],
|
||||
torch.tensor(expected_mask_value, dtype=dtype))
|
||||
|
@ -572,7 +572,8 @@ class AscendMetadataBuilder(CommonMetadataBuilder[AscendMetadata]):
|
||||
attn_mask = AscendMetadataBuilder._attn_mask_builder.get_attn_mask( # type: ignore
|
||||
max_seq_len, dtype, device)
|
||||
if attn_mask.numel() > 1 and attn_mask[0][1] > 0:
|
||||
attn_mask *= -10000
|
||||
# Do not use in-place multiplication to avoid modifying `attn_mask_cache`!
|
||||
attn_mask = attn_mask * -10000
|
||||
chunk_mask_list = []
|
||||
for i, seq_len in enumerate(seq_lens):
|
||||
context_len = self.context_lens[i]
|
||||
|
@ -68,7 +68,8 @@ class AttentionMaskBuilder:
|
||||
) > 1 and self.attn_mask_cache[0][1] > 0:
|
||||
attn_mask = self.get_attn_mask( # type: ignore
|
||||
max_seq_len, dtype, device)
|
||||
attn_mask *= -10000
|
||||
# Do not use in-place multiplication to avoid modifying `self.attn_mask_cache`!
|
||||
attn_mask = attn_mask * -10000
|
||||
else:
|
||||
attn_mask = self.attn_mask_cache
|
||||
return torch.index_select(attn_mask, dim=0,
|
||||
|
Reference in New Issue
Block a user