[Doc] Add Quickstart doc (#44)

### What this PR does / why we need it?
This PR add the quickstart doc 

### Does this PR introduce _any_ user-facing change?
No

### How was this patch tested?
Preview

---------

Signed-off-by: Yikun Jiang <yikunkero@gmail.com>
This commit is contained in:
Yikun Jiang
2025-02-13 16:29:36 +08:00
committed by GitHub
parent c8b57d10b2
commit 63b11ec7e9

View File

@ -1,17 +1,185 @@
# Quick Start
# Quickstart
## Prerequisites
### Support Devices
## 1. Prerequisites
### Supported Devices
- Atlas A2 Training series (Atlas 800T A2, Atlas 900 A2 PoD, Atlas 200T A2 Box16, Atlas 300T A2)
- Atlas 800I A2 Inference series (Atlas 800I A2)
### Dependencies
| Requirement | Supported version | Recommended version | Note |
|-------------|-------------------| ----------- |------------------------------------------|
| vLLM | main | main | Required for vllm-ascend |
| Python | >= 3.9 | [3.10](https://www.python.org/downloads/) | Required for vllm |
| CANN | >= 8.0.RC2 | [8.0.RC3](https://www.hiascend.com/developer/download/community/result?module=cann&cann=8.0.0.beta1) | Required for vllm-ascend and torch-npu |
| torch-npu | >= 2.4.0 | [2.5.1rc1](https://gitee.com/ascend/pytorch/releases/tag/v6.0.0.alpha001-pytorch2.5.1) | Required for vllm-ascend |
| torch | >= 2.4.0 | [2.5.1](https://github.com/pytorch/pytorch/releases/tag/v2.5.1) | Required for torch-npu and vllm |
<!-- TODO(yikun): replace "Prepare Environment" and "Installation" with "Running with vllm-ascend container image" -->
Find more about how to setup your environment in [here](docs/environment.md).
### Prepare Environment
You can use the container image directly with one line command:
```bash
# Update DEVICE according to your device (/dev/davinci[0-7])
DEVICE=/dev/davinci7
IMAGE=quay.io/ascend/cann:8.0.rc3.beta1-910b-ubuntu22.04-py3.10
docker run \
--name vllm-ascend-env --device $DEVICE \
--device /dev/davinci_manager --device /dev/devmm_svm --device /dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v /root/.cache:/root/.cache \
-it --rm $IMAGE bash
```
You can verify by running below commands in above container shell:
```bash
npu-smi info
```
You will see following message:
```
+-------------------------------------------------------------------------------------------+
| npu-smi 23.0.2 Version: 23.0.2 |
+----------------------+---------------+----------------------------------------------------+
| NPU Name | Health | Power(W) Temp(C) Hugepages-Usage(page)|
| Chip | Bus-Id | AICore(%) Memory-Usage(MB) HBM-Usage(MB) |
+======================+===============+====================================================+
| 0 xxx | OK | 0.0 40 0 / 0 |
| 0 | 0000:C1:00.0 | 0 882 / 15169 0 / 32768 |
+======================+===============+====================================================+
```
## 2. Installation
Prepare:
```bash
apt update
apt install git curl vim -y
# Config pypi mirror to speedup
pip config set global.index-url https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple
```
Create your venv
```bash
python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip
```
You can install vLLM and vllm-ascend plugin by using:
```bash
# Install vLLM main branch (About 5 mins)
git clone --depth 1 https://github.com/vllm-project/vllm.git
cd vllm
VLLM_TARGET_DEVICE=empty pip install .
cd ..
# Install vLLM Ascend Plugin:
git clone --depth 1 https://github.com/vllm-project/vllm-ascend.git
cd vllm-ascend
pip install -e .
cd ..
```
## 3. Usage
After vLLM and vLLM Ascend plugin installation, you can start to
try [vLLM QuickStart](https://docs.vllm.ai/en/latest/getting_started/quickstart.html).
You have two ways to start vLLM on Ascend NPU:
### Offline Batched Inference with vLLM
With vLLM installed, you can start generating texts for list of input prompts (i.e. offline batch inferencing).
```bash
# Use Modelscope mirror to speed up download
pip install modelscope
export VLLM_USE_MODELSCOPE=true
```
Try to run below Python script directly or use `python3` shell to generate texts:
```python
from vllm import LLM, SamplingParams
prompts = [
"Hello, my name is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# The first run will take about 3-5 mins (10 MB/s) to download models
llm = LLM(model="Qwen/Qwen2.5-0.5B-Instruct")
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
### OpenAI Completions API with vLLM
vLLM can also be deployed as a server that implements the OpenAI API protocol. Run
the following command to start the vLLM server with the
[Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) model:
```bash
# Use Modelscope mirror to speed up download
pip install modelscope
export VLLM_USE_MODELSCOPE=true
# Deploy vLLM server (The first run will take about 3-5 mins (10 MB/s) to download models)
vllm serve Qwen/Qwen2.5-0.5B-Instruct &
```
If you see log as below:
```
INFO: Started server process [3594]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
```
Congratulations, you have successfully started the vLLM server!
You can query the list the models:
```bash
curl http://localhost:8000/v1/models | python3 -m json.tool
```
You can also query the model with input prompts:
```bash
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen/Qwen2.5-0.5B-Instruct",
"prompt": "Beijing is a",
"max_tokens": 5,
"temperature": 0
}' | python3 -m json.tool
```
vLLM is serving as background process, you can use `kill -2 $VLLM_PID` to stop the background process gracefully,
it's equal to `Ctrl-C` to stop foreground vLLM process:
```bash
ps -ef | grep "/.venv/bin/vllm serve" | grep -v grep
VLLM_PID=`ps -ef | grep "/.venv/bin/vllm serve" | grep -v grep | awk '{print $2}'`
kill -2 $VLLM_PID
```
You will see output as below:
```
INFO 02-12 03:34:10 launcher.py:59] Shutting down FastAPI HTTP server.
INFO: Shutting down
INFO: Waiting for application shutdown.
INFO: Application shutdown complete.
```
Finally, you can exit container by using `ctrl-D`.