[CI] Refator multi-node CI (#3487)

### What this PR does / why we need it?
Refactor the multi-machine CI use case. The purpose of this PR is to
increase the ease of adding multi-machine CI use cases, allowing
developers to add multi-machine cluster model testing use cases
(including PD separation) by simply adding a new YAML configuration
file.
### Does this PR introduce _any_ user-facing change?

### How was this patch tested?

- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

---------

Signed-off-by: wangli <wangli858794774@gmail.com>
This commit is contained in:
Li Wang
2025-10-17 09:04:31 +08:00
committed by GitHub
parent ccb6fb9ec1
commit 4c4a8458a5
18 changed files with 632 additions and 437 deletions

View File

@ -102,6 +102,15 @@ jobs:
wait $LOG_PID || true
kill $MONITOR_PID || true
- name: Generate summary
if: always()
run: |
if [ -f "/root/.cache/test_summary.md" ]; then
cat /root/.cache/test_summary.md >> "$GITHUB_STEP_SUMMARY"
else
echo "No summary file found." >> "$GITHUB_STEP_SUMMARY"
fi
- name: Post process
if: always()
run: |

View File

@ -66,16 +66,16 @@ Install the relevant dependencies. The installation of Go is not required.
```shell
cd Mooncake
bash dependencies.sh
bash dependencies.sh -y
```
Install mpi
```shell
apt purge mpich libmpich-dev
apt purge openmpi-bin
apt purge openmpi-bin libopenmpi-dev
apt install mpich libmpich-dev
apt purge mpich libmpich-dev -y
apt purge openmpi-bin -y
apt purge openmpi-bin libopenmpi-dev -y
apt install mpich libmpich-dev -y
export CPATH=/usr/lib/aarch64-linux-gnu/mpich/include/:$CPATH
export CPATH=/usr/lib/aarch64-linux-gnu/openmpi/lib:$CPATH
```

View File

@ -205,7 +205,7 @@ vllm serve /models/deepseek_r1_w8a8 \
Run proxy server on the first node:
```shell
cd /vllm-workspace/vllm-ascend/examples/disaggregated_prefill_v1
python toy_proxy_server.py --host 172.19.32.175 --port 1025 --prefiller-hosts 172.19.241.49 --prefiller-port 20002 --decoder-hosts 172.19.123.51 --decoder-ports 20002
python load_balance_proxy_server_example.py --host 172.19.32.175 --port 1025 --prefiller-hosts 172.19.241.49 --prefiller-port 20002 --decoder-hosts 172.19.123.51 --decoder-ports 20002
```
Verification

View File

@ -21,6 +21,10 @@ parser.add_argument("--local-device-ids",
type=str,
required=False,
help="local device ids")
parser.add_argument("--ranktable-path",
type=str,
default="./ranktable.json",
help="output rank table path")
args = parser.parse_args()
local_host = args.local_host
prefill_device_cnt = args.prefill_device_cnt
@ -130,7 +134,8 @@ ranktable = {
}
if local_rank == '0':
with open("ranktable.json", "w") as f:
os.makedirs(os.path.dirname(args.ranktable_path), exist_ok=True)
with open(args.ranktable_path, "w") as f:
json.dump(ranktable, f, indent=4)
print("gen ranktable.json done")

View File

@ -21,6 +21,7 @@ import contextlib
import gc
import json
import os
import shlex
import subprocess
import sys
import time
@ -40,14 +41,11 @@ from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer,
from transformers.models.auto.auto_factory import _BaseAutoModelClass
from vllm import LLM, SamplingParams
from vllm.config.model import TaskOption, _get_and_verify_dtype
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.entrypoints.cli.serve import ServeSubcommand
from vllm.inputs import TextPrompt
from vllm.model_executor.model_loader import get_model_loader
from vllm.outputs import RequestOutput
from vllm.platforms import current_platform
from vllm.transformers_utils.utils import maybe_model_redirect
from vllm.utils import FlexibleArgumentParser, get_open_port
from vllm.utils import get_open_port
from tests.e2e.model_utils import (TokensTextLogprobs,
TokensTextLogprobsPromptLogprobs)
@ -91,7 +89,7 @@ def cleanup_dist_env_and_memory(shutdown_ray: bool = False):
class RemoteOpenAIServer:
DUMMY_API_KEY = "token-abc123" # vLLM's OpenAI server does not need API key
def _start_server(self, model: str, vllm_serve_args: list[str],
def _start_server(self, model: str, server_cmd: list[str],
env_dict: Optional[dict[str, str]]) -> None:
"""Subclasses override this method to customize server process launch
"""
@ -102,7 +100,7 @@ class RemoteOpenAIServer:
if env_dict is not None:
env.update(env_dict)
self.proc: subprocess.Popen = subprocess.Popen(
["vllm", "serve", model, *vllm_serve_args],
server_cmd,
env=env,
stdout=sys.stdout,
stderr=sys.stderr,
@ -110,15 +108,19 @@ class RemoteOpenAIServer:
def __init__(self,
model: str,
vllm_serve_args: list[str],
vllm_serve_args: Union[list[str], str],
*,
server_host: str = "0.0.0.0",
server_port: int = 8080,
env_dict: Optional[dict[str, str]] = None,
seed: Optional[int] = 0,
seed: Optional[int] = None,
auto_port: bool = True,
max_wait_seconds: Optional[float] = None,
override_hf_configs: Optional[dict[str, Any]] = None) -> None:
if isinstance(vllm_serve_args, str):
vllm_serve_args = shlex.split(vllm_serve_args)
else:
vllm_serve_args = ["vllm", "serve", model, *vllm_serve_args]
if auto_port:
if "-p" in vllm_serve_args or "--port" in vllm_serve_args:
raise ValueError("You have manually specified the port "
@ -142,33 +144,9 @@ class RemoteOpenAIServer:
"--hf-overrides",
json.dumps(override_hf_configs)
]
parser = FlexibleArgumentParser(
description="vLLM's remote OpenAI server.")
subparsers = parser.add_subparsers(required=False, dest="subparser")
parser = ServeSubcommand().subparser_init(subparsers)
args = parser.parse_args([*vllm_serve_args])
self.uds = args.uds
if args.uds:
self.host = None
self.port = None
else:
self.host = str(server_host)
self.port = int(server_port)
self.show_hidden_metrics = \
args.show_hidden_metrics_for_version is not None
# download the model before starting the server to avoid timeout
is_local = os.path.isdir(model)
if not is_local:
engine_args = AsyncEngineArgs.from_cli_args(args)
model_config = engine_args.create_model_config()
load_config = engine_args.create_load_config()
model_loader = get_model_loader(load_config)
model_loader.download_model(model_config)
self._start_server(model, vllm_serve_args, env_dict)
max_wait_seconds = max_wait_seconds or 7200
self._wait_for_server(url=self.url_for("health"),
@ -195,11 +173,7 @@ class RemoteOpenAIServer:
This is for headless mode, where the api server
process only exists in the leader node.
"""
if self.uds:
client = httpx.Client(transport=httpx.HTTPTransport(uds=self.uds))
else:
client = requests
try:
while True:
try:
@ -216,8 +190,7 @@ class RemoteOpenAIServer:
def _wait_for_server(self, *, url: str, timeout: float):
# run health check
start = time.time()
client = (httpx.Client(transport=httpx.HTTPTransport(
uds=self.uds)) if self.uds else requests)
client = requests
while True:
try:
if client.get(url).status_code == 200:
@ -231,15 +204,14 @@ class RemoteOpenAIServer:
if result is not None and result != 0:
raise RuntimeError("Server exited unexpectedly.") from None
time.sleep(1)
time.sleep(5)
if time.time() - start > timeout:
raise RuntimeError(
"Server failed to start in time.") from None
@property
def url_root(self) -> str:
return (f"http://{self.uds.split('/')[-1]}"
if self.uds else f"http://{self.host}:{self.port}")
return f"http://{self.host}:{self.port}"
def url_for(self, *parts: str) -> str:
return self.url_root + "/" + "/".join(parts)

View File

@ -1,43 +0,0 @@
[
{
"test_name": "test_deepseek_v3",
"disaggregate_prefill": false,
"enable_multithread_load": false,
"num_nodes": 2,
"server_parameters": {
"leader_config": {
"model": "vllm-ascend/DeepSeek-V3-W8A8",
"quantization": "ascend",
"additional_config": {
"ascend_scheduler_config": {
"enabled": true
},
"torchair_graph_config": {
"enabled": true
}
}
},
"worker_config": {
"model": "vllm-ascend/DeepSeek-V3-W8A8",
"quantization": "ascend",
"additional_config": {
"ascend_scheduler_config": {
"enabled": true
},
"torchair_graph_config": {
"enabled": true
}
}
}
},
"client_parameters": {
"model": "vllm-ascend/DeepSeek-V3-W8A8",
"backend": "vllm",
"dataset_name": "sharegpt",
"dataset_path": "/root/.cache/datasets/ShareGPT_V3_unfiltered_cleaned_split.json",
"num_prompts": 200,
"request_rate": 1
},
"accuracy_parameters": {}
}
]

View File

@ -1,204 +0,0 @@
import json
import logging
import os
from dataclasses import dataclass, field, fields
from pathlib import Path
from typing import Any, Dict, List, Optional, Type, TypeVar, Union
from tests.e2e.multi_node.config.utils import (get_avaliable_port,
get_leader_ip,
get_net_interface)
LOG = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
CONFIG_PATH = Path("tests/e2e/multi_node/config/config.json")
T = TypeVar("T", bound="BaseConfig")
# =========================
# Base Config
# =========================
@dataclass
class BaseConfig:
model: str = "vllm-ascend/DeepSeek-V3-W8A8"
_extra_fields: Optional[Dict[str, Any]] = None
@classmethod
def from_config(cls: Type[T], data: dict[str, Any]) -> T:
"""Create config instance from dict, keeping unknown fields."""
field_names = {f.name for f in fields(cls)}
valid_fields = {k: v for k, v in data.items() if k in field_names}
extra_fields = {k: v for k, v in data.items() if k not in field_names}
obj = cls(**valid_fields)
obj._extra_fields = extra_fields or {}
return obj
def to_list(self) -> List[str]:
"""Convert all fields (including _extra_fields) to CLI arguments."""
args: List[str] = []
all_items = {**vars(self), **(self._extra_fields or {})}
for key, value in all_items.items():
if key in ("model", "_extra_fields") or value in (None, "", [],
{}):
continue
key = key.replace("_", "-")
if isinstance(value, bool):
if value:
args.append(f"--{key}")
elif isinstance(value, dict):
args += [f"--{key}", json.dumps(value, ensure_ascii=False)]
else:
args += [f"--{key}", str(value)]
return args
# =========================
# Server Config
# =========================
@dataclass
class ServerConfig(BaseConfig):
host: str = "0.0.0.0"
port: int = 8080
trust_remote_code: bool = True
enable_expert_parallel: bool = True
gpu_memory_utilization: float = 0.9
headless: bool = False
quantization: Optional[str] = None
tensor_parallel_size: int = 8
max_model_len: int = 8192
max_num_batched_token: int = 8192
data_parallel_size: int = 4
data_parallel_size_local: int = 2
data_parallel_start_rank: int = 0
data_parallel_rpc_port: int = 13389
data_parallel_address: Optional[str] = None
kv_transfer_config: Optional[Dict[str, Any]] = None
additional_config: Optional[Dict[str, Any]] = None
def init_dp_param(
self,
is_leader: bool,
is_disaggregate_prefill: bool,
dp_size: int,
world_size: int,
) -> None:
"""Initialize distributed parallel parameters."""
iface = get_net_interface()
if iface is None:
raise RuntimeError("No available network interface found")
self.data_parallel_address = iface[0]
if is_disaggregate_prefill:
self.data_parallel_start_rank = 0
return
if not is_leader:
self.headless = True
self.data_parallel_start_rank = dp_size // world_size
self.data_parallel_address = get_leader_ip()
@dataclass
class PerfConfig(BaseConfig):
pass
@dataclass
class AccuracyConfig:
prompt: str
expected_output: str
# =========================
# MultiNode Config
# =========================
@dataclass
class MultiNodeConfig:
test_name: str = "Unnamed Test"
disaggregate_prefill: bool = False
enable_multithread_load: bool = True
world_size: int = 2
server_host: str = "0.0.0.0"
server_port: int = 8888
server_config: ServerConfig = field(default_factory=ServerConfig)
perf_config: Optional[PerfConfig] = None
accuracy_config: Optional[AccuracyConfig] = None
@classmethod
def from_config(cls, cfg: Dict[str, Any]) -> "MultiNodeConfig":
"""Create a MultiNodeConfig from raw dict."""
num_nodes = cfg.get("num_nodes", 2)
is_disaggregate_prefill = cfg.get("disaggregate_prefill", False)
node_index = int(os.getenv("LWS_WORKER_INDEX", 0))
is_leader = node_index == 0
# server config
server_cfg_data = cfg.get("server_parameters", {})
if not server_cfg_data:
raise ValueError("Missing required key: 'server_parameters'")
role_key = "leader_config" if is_leader else "worker_config"
server_cfg_dict = server_cfg_data.get(role_key, {})
server_cfg: ServerConfig = ServerConfig.from_config(server_cfg_dict)
if cfg.get("enable_multithread_load"):
server_cfg.model_loader_extra_config = { # type: ignore[attr-defined]
"enable_multithread_load": True,
"num_threads": 8,
}
# distributed param init
server_cfg.init_dp_param(
is_leader=is_leader,
is_disaggregate_prefill=is_disaggregate_prefill,
dp_size=server_cfg.data_parallel_size,
world_size=num_nodes,
)
perf_cfg: Optional[PerfConfig] = (PerfConfig.from_config(
cfg.get("client_parameters", {})) if cfg.get("client_parameters")
else None)
# network info
leader_cfg = server_cfg_data.get("leader_config", {})
server_host = get_leader_ip()
server_port = (get_avaliable_port() if is_disaggregate_prefill else
leader_cfg.get("port", 8080))
return cls(
test_name=str(cfg.get("test_name", "Unnamed Test")),
disaggregate_prefill=is_disaggregate_prefill,
enable_multithread_load=cfg.get("enable_multithread_load", False),
world_size=num_nodes,
server_config=server_cfg,
perf_config=perf_cfg,
server_host=server_host,
server_port=server_port,
)
# =========================
# Loader
# =========================
def load_configs(
path: Union[str, Path] = CONFIG_PATH) -> List[MultiNodeConfig]:
"""Load one or multiple configs from JSON file."""
path = Path(path)
if not path.exists():
raise FileNotFoundError(f"Configuration file not found: {path}")
raw = json.loads(path.read_text())
configs_data = raw if isinstance(raw, list) else [raw]
configs = []
for idx, item in enumerate(configs_data):
try:
configs.append(MultiNodeConfig.from_config(item))
except Exception as e:
LOG.exception(f"Failed to parse config #{idx}: {e}")
raise
return configs

View File

@ -1,68 +0,0 @@
import os
import socket
import subprocess
from typing import Optional, Tuple
import psutil
def get_leader_ip():
leader_dns = os.getenv("LWS_LEADER_ADDRESS")
assert leader_dns is not None, "cannot find leader address"
return socket.gethostbyname(leader_dns)
def get_avaliable_port(start_port: int = 6000, end_port: int = 7000) -> int:
import socket
for port in range(start_port, end_port):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
try:
s.bind(("", port))
return port
except OSError:
continue
raise RuntimeError("No available port found")
def get_net_interface(ip: Optional[str] = None) -> Optional[Tuple[str, str]]:
"""
Returns specified IP and its network interface.
If no IP is provided, uses the first from hostname -I.
"""
if ip is None:
ips = subprocess.check_output(["hostname",
"-I"]).decode().strip().split()
if not ips:
return None
ip = ips[0]
for iface, addrs in psutil.net_if_addrs().items():
for addr in addrs:
if addr.family == socket.AF_INET and addr.address == ip:
return ip, iface
return None
def get_default_envs() -> dict[str, str]:
"""Returns default network and system environment variables."""
result = get_net_interface()
if result is None:
raise RuntimeError("Failed to get default network IP and interface")
ip, nic_name = result
return {
"HCCL_IF_IP": ip,
"GLOO_SOCKET_IFNAME": nic_name,
"TP_SOCKET_IFNAME": nic_name,
"HCCL_SOCKET_IFNAME": nic_name,
"OMP_PROC_BIND": "false",
"OMP_NUM_THREADS": "100",
"VLLM_USE_V1": "1",
"HCCL_BUFFSIZE": "1024",
"VLLM_USE_MODELSCOPE": "true",
"NUMEXPR_MAX_THREADS": "100",
}
def generate_ranktable():
pass

View File

@ -1,49 +0,0 @@
import subprocess
import pytest
from tests.e2e.conftest import RemoteOpenAIServer
from tests.e2e.multi_node.config.multi_node_config import (MultiNodeConfig,
load_configs)
from tests.e2e.multi_node.config.utils import get_default_envs
configs = load_configs()
def get_benchmark_cmd(model: str, base_url: str, args: list[str]):
"""vllm bench serve <model> --base-url <url> ..."""
return [
"vllm", "bench", "serve", "--model", model, "--base-url", base_url
] + args
@pytest.mark.parametrize("config", configs)
def test_multi_dp(config: MultiNodeConfig) -> None:
env_dict = get_default_envs()
server_config = config.server_config
perf_config = config.perf_config
model_name = server_config.model
assert model_name is not None, "Model name must be specified"
server_args = server_config.to_list()
with RemoteOpenAIServer(
model_name,
server_args,
server_host=config.server_host,
server_port=config.server_port,
env_dict=env_dict,
auto_port=False,
seed=1024,
max_wait_seconds=1000,
) as remote_server:
base_url = remote_server.url_root
assert perf_config is not None, "Perf config must be specified for perf tests"
perf_cmd = get_benchmark_cmd(server_config.model, base_url,
perf_config.to_list())
if server_config.headless:
remote_server.hang_until_terminated()
else:
# run perf benchmark
subprocess.run(perf_cmd, check=True)

View File

@ -0,0 +1,126 @@
# For disaggregated mode, set is_disaggregated: true, and set the following parameters:
# Prefiller_index: the hosts index of the node running prefiller
# Decoder_index: the hosts index of the node running decoder
# Suppose we have **4 nodes** running a 2P1D setup (2 Prefillers + 1 Decoder):
# ┌───────────────┬───────────────┬───────────────┬───────────────┐
# │ node0 │ node1 │ node2 │ node3 │
# │ Prefiller #1 │ Prefiller #2 │ Decoder │ Decoder │
# └───────────────┴───────────────┴───────────────┴───────────────┘
# For the prefiller nodes. the hosts should be node0 and node1
# For the decoder nodes. we only have 1 decoder node(dp+tp+ep across node2 and node3. Where node3 is running with headless mode)
# So the prefiller_host_index is [0, 1], and the decoder_host_index is [2]
test_name: "test DeepSeek-V3 disaggregated_prefill"
model: "vllm-ascend/DeepSeek-V3-W8A8"
num_nodes: 2
npu_per_node: 16
env_common:
VLLM_USE_MODELSCOPE: true
OMP_PROC_BIND: false
OMP_NUM_THREADS: 100
HCCL_BUFFSIZE: 1024
SERVER_PORT: 8080
disaggregated_prefill:
enabled: true
prefiller_host_index: [0]
decoder_host_index: [1]
deployment:
-
local_index: 0
master_index: 0
headless: false
env_extend:
server_cmd: >
vllm serve "vllm-ascend/DeepSeek-V3-W8A8"
--host 0.0.0.0
--port $SERVER_PORT
--data-parallel-size 2
--data-parallel-size-local 2
--tensor-parallel-size 8
--seed 1024
--enforce-eager
--enable-expert-parallel
--max-num-seqs 16
--max-model-len 8192
--max-num-batched-tokens 8192
--quantization ascend
--trust-remote-code
--no-enable-prefix-caching
--gpu-memory-utilization 0.9
--kv-transfer-config
'{"kv_connector": "MooncakeConnector",
"kv_role": "kv_producer",
"kv_port": "30000",
"engine_id": "0",
"kv_connector_module_path": "vllm_ascend.distributed.mooncake_connector",
"kv_connector_extra_config": {
"prefill": {
"dp_size": 2,
"tp_size": 8
},
"decode": {
"dp_size": 2,
"tp_size": 8
}
}
}'
-
local_index: 1
master_index: 0
headless: true
env_extend:
server_cmd: >
vllm serve "vllm-ascend/DeepSeek-V3-W8A8"
--host 0.0.0.0
--port $SERVER_PORT
--data-parallel-size 2
--data-parallel-size-local 2
--tensor-parallel-size 8
--seed 1024
--quantization ascend
--max-num-seqs 16
--max-model-len 8192
--max-num-batched-tokens 8192
--enable-expert-parallel
--trust-remote-code
--no-enable-prefix-caching
--gpu-memory-utilization 0.9
--additional-config '{"torchair_graph_config":{"enabled":true}}'
--kv-transfer-config
'{"kv_connector": "MooncakeConnector",
"kv_role": "kv_consumer",
"kv_port": "30200",
"engine_id": "1",
"kv_connector_module_path": "vllm_ascend.distributed.mooncake_connector",
"kv_connector_extra_config": {
"prefill": {
"dp_size": 2,
"tp_size": 8
},
"decode": {
"dp_size": 2,
"tp_size": 8
}
}
}'
benchmarks:
perf:
case_type: performance
dataset_path: vllm-ascend/GSM8K-in3500-bs400
request_conf: vllm_api_stream_chat
dataset_conf: gsm8k/gsm8k_gen_0_shot_cot_str_perf
num_prompts: 1
max_out_len: 2
batch_size: 1
baseline: 5
threshold: 0.97
acc:
case_type: accuracy
dataset_path: vllm-ascend/AIME2024
request_conf: vllm_api_general_chat
dataset_conf: aime2024/aime2024_gen_0_shot_chat_prompt
max_out_len: 10
batch_size: 32
baseline: 1
threshold: 1

View File

@ -0,0 +1,76 @@
test_name: "test Qwen3-235B-A22B multi-dp"
model: "Qwen/Qwen3-235B-A22B"
num_nodes: 2
npu_per_node: 16
env_common:
VLLM_USE_MODELSCOPE: true
OMP_PROC_BIND: false
OMP_NUM_THREADS: 100
HCCL_BUFFSIZE: 1024
SERVER_PORT: 8080
deployment:
-
local_index: 0
master_index: 0
headless: false
env_extend:
server_cmd: >
vllm serve "Qwen/Qwen3-235B-A22B"
--host 0.0.0.0
--port $SERVER_PORT
--data-parallel-size 4
--data-parallel-size-local 2
--data-parallel-address $LOCAL_IP
--data-parallel-rpc-port 13389
--tensor-parallel-size 8
--seed 1024
--enable-expert-parallel
--max-num-seqs 16
--max-model-len 8192
--max-num-batched-tokens 8192
--trust-remote-code
--no-enable-prefix-caching
--gpu-memory-utilization 0.9
-
local_index: 1
master_index: 0
headless: true
env_extend:
server_cmd: >
vllm serve "Qwen/Qwen3-235B-A22B"
--headless
--data-parallel-size 4
--data-parallel-size-local 2
--data-parallel-start-rank 2
--data-parallel-address $MASTER_IP
--data-parallel-rpc-port 13389
--tensor-parallel-size 8
--seed 1024
--max-num-seqs 16
--max-model-len 8192
--max-num-batched-tokens 8192
--enable-expert-parallel
--trust-remote-code
--no-enable-prefix-caching
--gpu-memory-utilization 0.9
benchmarks:
perf:
case_type: performance
dataset_path: vllm-ascend/GSM8K-in3500-bs400
request_conf: vllm_api_stream_chat
dataset_conf: gsm8k/gsm8k_gen_0_shot_cot_str_perf
num_prompts: 1
max_out_len: 2
batch_size: 1
baseline: 5
threshold: 0.97
acc:
case_type: accuracy
dataset_path: vllm-ascend/AIME2024
request_conf: vllm_api_general_chat
dataset_conf: aime2024/aime2024_gen_0_shot_chat_prompt
max_out_len: 10
batch_size: 32
baseline: 1
threshold: 1

View File

@ -0,0 +1,207 @@
import logging
import os
import subprocess
from typing import Optional
import regex as re
import yaml
from tests.e2e.nightly.multi_node.config.utils import (get_avaliable_port,
get_cluster_ips,
get_cur_ip,
get_net_interface,
setup_logger)
setup_logger()
logger = logging.getLogger(__name__)
DISAGGREGATED_PREFILL_PROXY_SCRIPT = "examples/disaggregated_prefill_v1/load_balance_proxy_layerwise_server_example.py"
class MultiNodeConfig:
def __init__(self,
model: str,
test_name: str,
num_nodes: int = 2,
npu_per_node: int = 16,
server_port: int = 8080,
headless: bool = False,
disaggregated_prefill: Optional[dict] = None,
envs: Optional[dict] = None,
server_cmd: str = "",
perf_cmd: Optional[str] = None,
acc_cmd: Optional[str] = None):
self.test_name = test_name
self.model = model
self.num_nodes = num_nodes
self.npu_per_node = npu_per_node
self.envs = envs if envs is not None else {}
self.server_port = server_port
if disaggregated_prefill:
self.proxy_port = get_avaliable_port()
self.headless = headless
self.server_cmd = server_cmd
self.perf_cmd = perf_cmd
self.acc_cmd = acc_cmd
assert perf_cmd is not None, "perf_cmd must be provided"
assert acc_cmd is not None, "acc_cmd must be provided"
assert server_cmd is not None, "server_cmd must be provided"
self.cur_index = os.getenv("LWS_WORKER_INDEX", 0)
self.cur_ip = get_cur_ip()
self.nic_name = get_net_interface(self.cur_ip)
self.cluster_ips = get_cluster_ips(num_nodes)
self.disaggregated_prefill = disaggregated_prefill
self._init_dist_env()
self.server_cmd = self._expand_env_vars(self.server_cmd, self.envs)
def _init_dist_env(self):
self.envs["HCCL_IF_IP"] = self.cur_ip
self.envs["GLOO_SOCKET_IFNAME"] = self.nic_name
self.envs["TP_SOCKET_IFNAME"] = self.nic_name
self.envs["HCCL_SOCKET_IFNAME"] = self.nic_name
self.envs["LOCAL_IP"] = self.cur_ip
self.envs["NIC_NAME"] = self.nic_name
self.envs["MASTER_IP"] = self.cluster_ips[0]
ascend_path = "/usr/local/Ascend/ascend-toolkit/latest/python/site-packages"
self.envs[
"LD_LIBRARY_PATH"] = f"{ascend_path}:{self.envs.get('LD_LIBRARY_PATH', os.environ.get('LD_LIBRARY_PATH', ''))}"
# keep the envs keys and values as strings
str_envs = {k: str(v) for k, v in self.envs.items()}
self.envs.clear()
self.envs.update(str_envs)
@staticmethod
def _expand_env_vars(cmd: str, env: dict) -> str:
"""Expand environment variables in the command string."""
cmd = str(cmd)
pattern = re.compile(r"\$(\w+)|\$\{(\w+)\}")
def replace_var(match):
var_name = match.group(1) or match.group(2)
return str(env.get(var_name, match.group(0)))
return pattern.sub(replace_var, cmd)
class _ProxyContext:
def __init__(self, outer, proxy_script):
self.outer = outer
self.proxy_script = proxy_script
self.process = None
def __enter__(self):
o = self.outer
if not o.disaggregated_prefill or not o.is_master:
logger.info(
"Disaggregated prefill not enabled or not master node, skipping proxy launch."
)
return self
prefiller_indices = o.disaggregated_prefill["prefiller_host_index"]
decoder_indices = o.disaggregated_prefill["decoder_host_index"]
common_indices = set(prefiller_indices) & set(decoder_indices)
assert not common_indices, f"Common indices found: {common_indices}"
assert o.proxy_port is not None, "proxy_port must be set"
prefiller_ips = [o.cluster_ips[i] for i in prefiller_indices]
decoder_ips = [o.cluster_ips[i] for i in decoder_indices]
prefiller_ports_list = [str(o.server_port)] * len(prefiller_ips)
decoder_ports_list = [str(o.server_port)] * len(decoder_ips)
proxy_cmd = [
"python",
self.proxy_script,
"--host",
o.cur_ip,
"--port",
str(o.proxy_port),
"--prefiller-hosts",
*prefiller_ips,
"--prefiller-ports",
*prefiller_ports_list,
"--decoder-hosts",
*decoder_ips,
"--decoder-ports",
*decoder_ports_list,
]
env = os.environ.copy()
env.update(o.envs)
logger.info(f"Launching proxy: {' '.join(proxy_cmd)}")
self.process = subprocess.Popen(proxy_cmd, env=env)
o.proxy_process = self.process
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if self.process:
logger.info("Terminating proxy server process...")
try:
self.process.terminate()
self.process.wait(timeout=5)
except subprocess.TimeoutExpired:
logger.warning(
"Proxy process did not terminate, killing it...")
self.process.kill()
logger.info("Proxy server process terminated.")
def launch_server_proxy(self, proxy_script: str):
"""Return a context manager that launches the proxy server if disaggregated prefill is enabled."""
return self._ProxyContext(self, proxy_script)
@classmethod
def from_yaml(cls, yaml_path: Optional[str] = None):
if not yaml_path:
yaml_path = os.getenv(
"CONFIG_YAML_PATH",
"tests/e2e/nightly/multi_node/config/models/DeepSeek-V3.yaml")
with open(yaml_path, 'r') as file:
config_data = yaml.safe_load(file)
test_name = config_data.get("test_name", "default_test")
model = config_data.get("model", "default_model")
envs = config_data.get("env_common", {})
num_nodes = config_data.get("num_nodes", 2)
npu_per_node = config_data.get("npu_per_node", 16)
disaggregated_prefill = config_data.get("disaggregated_prefill")
# If disaggregated_prefill is set, override server_port to an available port for proxy running
server_port = config_data.get("server_port", 8080)
deployments = config_data.get("deployment", [])
assert len(deployments) == num_nodes, \
f"Number of deployments ({len(deployments)}) must match num_nodes ({num_nodes})"
for deployment in deployments:
if deployment.get("local_index") == int(
os.getenv("LWS_WORKER_INDEX", 0)):
envs_extend = deployment.get("env_extend", {})
if envs_extend:
envs.update(envs_extend)
server_cmd = deployment.get("server_cmd")
headless = deployment.get("headless", False)
break
benchmarks = config_data.get("benchmarks", {})
assert benchmarks is not None, "benchmarks must be provided"
perf_cmd = benchmarks["perf"]
acc_cmd = benchmarks["acc"]
return cls(model=model,
test_name=test_name,
num_nodes=num_nodes,
npu_per_node=npu_per_node,
envs=envs,
server_port=server_port,
headless=headless,
disaggregated_prefill=disaggregated_prefill,
server_cmd=server_cmd,
perf_cmd=perf_cmd,
acc_cmd=acc_cmd)
@property
def world_size(self):
return self.num_nodes * self.npu_per_node
@property
def is_master(self):
return int(self.cur_index) == 0

View File

@ -0,0 +1,95 @@
import logging
import os
import socket
from contextlib import contextmanager
from typing import Optional
import psutil
# import torch.distributed as dist
@contextmanager
def temp_env(env_dict):
old_env = {}
for k, v in env_dict.items():
old_env[k] = os.environ.get(k)
os.environ[k] = str(v)
try:
yield
finally:
for k, v in old_env.items():
if v is None:
os.environ.pop(k, None)
else:
os.environ[k] = v
# @contextmanager
# def dist_group(backend="gloo"):
# if dist.is_initialized():
# yield
# return
# dist.init_process_group(backend=backend)
# try:
# yield
# finally:
# dist.destroy_process_group()
def get_cluster_ips(word_size: int = 2) -> list[str]:
"""
Returns the IP addresses of all nodes in the cluster.
0: leader
1~N-1: workers
"""
leader_dns = os.getenv("LWS_LEADER_ADDRESS")
if not leader_dns:
raise RuntimeError("LWS_LEADER_ADDRESS is not set")
cluster_dns = [leader_dns]
for i in range(1, word_size):
cur_dns = f"vllm-0-{i}.vllm.vllm-project"
cluster_dns.append(cur_dns)
return [socket.gethostbyname(dns) for dns in cluster_dns]
def get_avaliable_port(start_port: int = 6000, end_port: int = 7000) -> int:
import socket
for port in range(start_port, end_port):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
try:
s.bind(("", port))
return port
except OSError:
continue
raise RuntimeError("No available port found")
def get_cur_ip() -> str:
"""Returns the current machine's IP address."""
return socket.gethostbyname_ex(socket.gethostname())[2][0]
def get_net_interface(ip: Optional[str] = None) -> Optional[str]:
"""
Returns specified IP's inetwork interface.
If no IP is provided, uses the first from hostname -I.
"""
if ip is None:
ip = get_cur_ip()
for iface, addrs in psutil.net_if_addrs().items():
for addr in addrs:
if addr.family == socket.AF_INET and addr.address == ip:
return iface
return None
def setup_logger():
"""Setup logging configuration."""
logging.basicConfig(
level=logging.INFO,
format="[%(asctime)s] [%(levelname)s] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
)

View File

@ -17,14 +17,8 @@ spec:
- name: vllm-leader
image: m.daocloud.io/quay.io/ascend/cann:8.2.rc1-a3-ubuntu22.04-py3.11
env:
- name: VLLM_USE_MODELSCOPE
value: "true"
- name: WORKSPACE
value: "/root/workspace"
- name: WORLD_SIZE
value: "2"
- name: NPU_PER_NODE
value: "16"
# Set vLLM version and vLLM-Ascend version here, once there is a new release, update here.
- name: VLLM_VERSION
value: "v0.11.0"
@ -37,6 +31,7 @@ spec:
- -c
- |
bash /root/.cache/tests/run.sh
tail -f /dev/null
resources:
limits:
huawei.com/ascend-1980: "16"
@ -77,14 +72,8 @@ spec:
- name: vllm-worker
image: m.daocloud.io/quay.io/ascend/cann:8.2.rc1-a3-ubuntu22.04-py3.11
env:
- name: VLLM_USE_MODELSCOPE
value: "true"
- name: WORKSPACE
value: "/root/workspace"
- name: WORLD_SIZE
value: "2"
- name: NPU_PER_NODE
value: "16"
# Set vLLM version and vLLM-Ascend version here, once there is a new release, update here.
- name: VLLM_VERSION
value: "v0.11.0"
@ -97,6 +86,7 @@ spec:
- -c
- |
bash /root/.cache/tests/run.sh
tail -f /dev/null
resources:
limits:
huawei.com/ascend-1980: "16"

View File

@ -32,10 +32,7 @@ checkout_src() {
#mooncake
if [ ! -d "$SRC_DIR/Mooncake" ]; then
git clone https://github.com/kvcache-ai/Mooncake.git "$SRC_DIR/Mooncake"
cd "$SRC_DIR/Mooncake"
git checkout 06cc217504a6f1b0cdaa26b096b985651b262748
cd -
git clone -b pooling_async_memecpy_v1 https://github.com/AscendTransport/Mooncake "$SRC_DIR/Mooncake"
fi
}
@ -62,25 +59,77 @@ install_vllm() {
install_mooncake() {
echo "====> Install mooncake"
apt-get update
apt install -y --allow-change-held-packages python3 python-is-python3
apt-get update -y
apt-get install -y --no-install-recommends mpich libmpich-dev
cd $SRC_DIR/Mooncake
sed -i '/option(USE_ASCEND_DIRECT)/s/OFF/ON/' mooncake-common/common.cmake
bash dependencies.sh --yes
apt purge mpich libmpich-dev -y
apt purge openmpi-bin -y
apt purge openmpi-bin libopenmpi-dev -y
apt install mpich libmpich-dev -y
export CPATH=/usr/lib/aarch64-linux-gnu/mpich/include/:$CPATH
export CPATH=/usr/lib/aarch64-linux-gnu/openmpi/lib:$CPATH
mkdir build
cd -
cd $SRC_DIR/Mooncake/build
cmake ..
make -j
make install
cp mooncake-transfer-engine/src/transport/ascend_transport/hccl_transport/ascend_transport_c/libascend_transport_mem.so /usr/local/Ascend/ascend-toolkit/latest/python/site-packages/
cp mooncake-transfer-engine/src/libtransfer_engine.so /usr/local/Ascend/ascend-toolkit/latest/python/site-packages/
cd -
}
kill_npu_processes() {
pgrep python3 | xargs -r kill -9
pgrep VLLM | xargs -r kill -9
sleep 4
}
run_tests() {
echo "====> Run tests"
cd "$SRC_DIR/vllm-ascend"
pytest -sv tests/e2e/multi_node/test_multi_dp.py
shopt -s nullglob
declare -A results
local total=0
local passed=0
local failed=0
local REPORT_FILE="/root/.cache/test_summary.md"
echo "#Nightly Multi-node Test Summary" > "$REPORT_FILE"
echo "" >> "$REPORT_FILE"
echo "| Config File | Result |" >> "$REPORT_FILE"
echo "|--------------|---------|" >> "$REPORT_FILE"
for file in tests/e2e/nightly/multi_node/config/models/*.yaml; do
export CONFIG_YAML_PATH="$file"
echo "Running test with config: $CONFIG_YAML_PATH"
if pytest -sv tests/e2e/nightly/multi_node/test_multi_node.py; then
results["$file"]="✅ PASS"
((passed++))
else
results["$file"]="❌ FAIL"
((failed++))
fi
((total++))
echo "| \`$file\` | ${results[$file]} |" >> "$REPORT_FILE"
echo "------------------------------------------"
kill_npu_processes
done
shopt -u nullglob
echo "" >> "$REPORT_FILE"
echo "## Summary" >> "$REPORT_FILE"
echo "- **Total:** $total" >> "$REPORT_FILE"
echo "- **Passed:** $passed" >> "$REPORT_FILE"
echo "- **Failed:** $failed" >> "$REPORT_FILE"
echo
echo "✅ Markdown report written to: $REPORT_FILE"
}
main() {
@ -89,7 +138,7 @@ main() {
checkout_src
install_sys_dependencies
install_vllm
#install_mooncake
install_mooncake
run_tests
}

View File

@ -0,0 +1,30 @@
from tests.e2e.conftest import RemoteOpenAIServer
from tests.e2e.nightly.multi_node.config.multi_node_config import (
DISAGGREGATED_PREFILL_PROXY_SCRIPT, MultiNodeConfig)
def test_multi_node() -> None:
config = MultiNodeConfig.from_yaml()
env_dict = config.envs
# perf_cmd = config.perf_cmd
# acc_cmd = config.acc_cmd
server_port = config.server_port if not config.disaggregated_prefill else config.proxy_port
server_host = config.cluster_ips[0]
with config.launch_server_proxy(DISAGGREGATED_PREFILL_PROXY_SCRIPT):
with RemoteOpenAIServer(
model=config.model,
vllm_serve_args=config.server_cmd,
server_port=server_port,
server_host=server_host,
env_dict=env_dict,
auto_port=False,
max_wait_seconds=2000,
) as remote_server:
# base_url = remote_server.url_root
if config.is_master:
pass
# TODO: enable perf and acc test
# subprocess.run(perf_cmd, check=True)
# subprocess.run(acc_cmd, check=True)
else:
remote_server.hang_until_terminated()