Files
verl/examples/data_preprocess/gsm8k.py

106 lines
3.6 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocess the GSM8k dataset to parquet format
"""
import argparse
import os
import re
import datasets
from verl.utils.hdfs_io import copy, makedirs
def extract_solution(solution_str):
solution = re.search("#### (\\-?[0-9\\.\\,]+)", solution_str)
assert solution is not None
final_solution = solution.group(0)
final_solution = final_solution.split("#### ")[1].replace(",", "")
return final_solution
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--local_dir", default=None, help="The save directory for the preprocessed dataset.")
parser.add_argument("--hdfs_dir", default=None)
parser.add_argument("--local_dataset_path", default=None, help="The local path to the raw dataset, if it exists.")
parser.add_argument(
"--local_save_dir", default="~/data/gsm8k", help="The save directory for the preprocessed dataset."
)
args = parser.parse_args()
local_dataset_path = args.local_dataset_path
data_source = "openai/gsm8k"
if local_dataset_path is not None:
dataset = datasets.load_dataset(local_dataset_path, "main")
else:
dataset = datasets.load_dataset(data_source, "main")
train_dataset = dataset["train"]
test_dataset = dataset["test"]
instruction_following = 'Let\'s think step by step and output the final answer after "####".'
# add a row to each data item that represents a unique id
def make_map_fn(split):
def process_fn(example, idx):
question_raw = example.pop("question")
question = question_raw + " " + instruction_following
answer_raw = example.pop("answer")
solution = extract_solution(answer_raw)
data = {
"data_source": data_source,
"prompt": [
{
"role": "user",
"content": question,
}
],
"ability": "math",
"reward_model": {"style": "rule", "ground_truth": solution},
"extra_info": {
"split": split,
"index": idx,
"answer": answer_raw,
"question": question_raw,
},
}
return data
return process_fn
train_dataset = train_dataset.map(function=make_map_fn("train"), with_indices=True)
test_dataset = test_dataset.map(function=make_map_fn("test"), with_indices=True)
hdfs_dir = args.hdfs_dir
local_save_dir = args.local_dir
if local_save_dir is not None:
print("Warning: Argument 'local_dir' is deprecated. Please use 'local_save_dir' instead.")
else:
local_save_dir = args.local_save_dir
train_dataset.to_parquet(os.path.join(local_save_dir, "train.parquet"))
test_dataset.to_parquet(os.path.join(local_save_dir, "test.parquet"))
if hdfs_dir is not None:
makedirs(hdfs_dir)
copy(src=local_save_dir, dst=hdfs_dir)