mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 13:43:50 +08:00
> [!WARNING]
> We are [immigrating to `ruff` as the linter and formatter and
`pre-commit` as the managing
tool](https://github.com/volcengine/verl/pull/1010).
>
> If your branch is based on a previous commit using `yapf` and
`pylint`, simply merging might trigger overwhelming linting errors,
while **you are only expected to resolve ones in the files related to
your PR**.
>
> To resolve this issue, please try the following workaround to only
include the files you **really changed** in the PR:
>
> 1. In your branch, fix linting and format with `ruff`: `ruff check
--fix && ruff-format`
> 2. Squash into a single commit in a new branch: `git reset --soft
$(git merge-base main HEAD) && git add -A && git commit -m "feat: ..."`
> 3. Merge with the latest main: `git merge origin/main`
> 4. Force push to your branch: `git push --force`
We add the reminder above to the documentation to tell contributors how
to avoid overwhelming linting errors.
### Motivation
According to dicussion in #896, this PR immigrates from yapf & pylint to
ruff based on pre-commit, which allows unified version control and
automatic hook on committing.
### Summary
The `pre-commit` hook and CI
- checks staged / committed files in commits / PR's
- checks all files each month (This should fail before we fix all the
files by the ruff standard)
### Explanation for the Failing CI Workflow `pre-commit`
For now, we only apply `ruff format` and `ruff check --fix` **without
resolving all the errors**, since there are too many errors to resolve,
which causes the CI workflow `pre-commit` fails.
For resolving the remaining errors, we leave to future commits.
Specifically, the `pre-commit` hook and CI will require every commit to
fix its related files with `ruff`, which will fix all the files
incrementally.
### Reviewing Suggestion
The commit
3d93f51ba8
is huge since we apply `ruff` to all the files. To review the main
changes, please check the commits before and after it.
163 lines
6.0 KiB
Python
163 lines
6.0 KiB
Python
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import time
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.distributed.fsdp import CPUOffload, MixedPrecision, ShardingStrategy
|
|
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
|
from torch.distributed.fsdp.api import ShardedStateDictConfig, ShardingStrategy, StateDictType
|
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
|
from vllm import SamplingParams
|
|
|
|
from verl.third_party.vllm import LLM
|
|
from verl.utils.distributed import initialize_global_process_group
|
|
|
|
|
|
def main():
|
|
assert torch.cuda.is_available(), "CUDA must be present to run FSDP vLLM example"
|
|
local_rank, rank, world_size = initialize_global_process_group()
|
|
|
|
local_cache_path = "~/.cache/verl/rlhf"
|
|
local_cache_path = os.path.expanduser(local_cache_path)
|
|
hdfs_path = "Qwen/Qwen2-7B-Instruct"
|
|
|
|
from verl.utils.fs import copy_to_local
|
|
|
|
local_model_path = copy_to_local(src=hdfs_path, cache_dir=local_cache_path)
|
|
tokenizer = AutoTokenizer.from_pretrained(local_model_path, trust_remote_code=True)
|
|
actor_model_config = AutoConfig.from_pretrained(local_model_path, trust_remote_code=True)
|
|
with torch.device("cuda"):
|
|
actor_model = AutoModelForCausalLM.from_pretrained(local_model_path, trust_remote_code=True)
|
|
actor_model.to(torch.bfloat16)
|
|
|
|
max_prompt_length = 16
|
|
response_length = 32
|
|
preencode_prompts = [
|
|
"The president of the United States is",
|
|
"The capital of France is",
|
|
"The future of AI is",
|
|
]
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
prompts = tokenizer(preencode_prompts, return_tensors="pt", padding=True)
|
|
input_ids = prompts["input_ids"]
|
|
attention_mask = prompts["attention_mask"]
|
|
from verl.utils.torch_functional import pad_sequence_to_length
|
|
|
|
input_ids = pad_sequence_to_length(input_ids, max_prompt_length, tokenizer.pad_token_id, left_pad=True).cuda()
|
|
attention_mask = pad_sequence_to_length(attention_mask, max_prompt_length, 0, left_pad=True).cuda()
|
|
|
|
from transformers import GenerationConfig
|
|
|
|
generation_config = GenerationConfig(do_sample=False)
|
|
actor_model.cuda()
|
|
output = actor_model.generate(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
max_new_tokens=32,
|
|
# max_length=max_length,
|
|
eos_token_id=tokenizer.eos_token_id,
|
|
pad_token_id=tokenizer.pad_token_id,
|
|
generation_config=generation_config,
|
|
# renormalize_logits=True,
|
|
output_scores=False, # this is potentially very large
|
|
return_dict_in_generate=True,
|
|
use_cache=False,
|
|
) # may OOM when use_cache = True
|
|
seq = output.sequences
|
|
response = seq[:, max_prompt_length:]
|
|
|
|
print(f"hf response: {tokenizer.batch_decode(response)}")
|
|
|
|
tensor_model_parallel_size = 4
|
|
from torch.distributed.device_mesh import init_device_mesh
|
|
|
|
device_mesh = init_device_mesh("cuda", mesh_shape=(world_size,), mesh_dim_names=["fsdp"])
|
|
|
|
mixed_precision = MixedPrecision(param_dtype=torch.bfloat16, reduce_dtype=torch.float32, buffer_dtype=torch.float32)
|
|
fsdp_model = FSDP(
|
|
actor_model,
|
|
use_orig_params=True,
|
|
auto_wrap_policy=None,
|
|
device_id=torch.cuda.current_device(),
|
|
sharding_strategy=ShardingStrategy.FULL_SHARD,
|
|
mixed_precision=mixed_precision,
|
|
cpu_offload=CPUOffload(offload_params=False),
|
|
sync_module_states=False,
|
|
device_mesh=device_mesh,
|
|
)
|
|
|
|
FSDP.set_state_dict_type(
|
|
fsdp_model, state_dict_type=StateDictType.SHARDED_STATE_DICT, state_dict_config=ShardedStateDictConfig()
|
|
)
|
|
|
|
state_dict = fsdp_model.state_dict()
|
|
|
|
sampling_params = SamplingParams(
|
|
temperature=0, top_p=1, n=1, max_tokens=response_length, logprobs=1, ignore_eos=True, detokenize=False
|
|
)
|
|
|
|
print(actor_model_config)
|
|
llm = LLM(
|
|
model=None,
|
|
tokenizer=tokenizer,
|
|
model_hf_config=actor_model_config,
|
|
tensor_parallel_size=tensor_model_parallel_size,
|
|
enforce_eager=True,
|
|
dtype="bfloat16",
|
|
load_format="dummy_dtensor",
|
|
gpu_memory_utilization=0.8,
|
|
trust_remote_code=True,
|
|
)
|
|
|
|
# Warmup iterations
|
|
for _ in range(10):
|
|
torch.cuda.synchronize()
|
|
llm.sync_model_weights(actor_weights=state_dict, load_format="dtensor")
|
|
torch.cuda.synchronize()
|
|
dist.barrier()
|
|
|
|
start_time = time.time()
|
|
llm.sync_model_weights(actor_weights=state_dict, load_format="dtensor")
|
|
torch.cuda.synchronize()
|
|
dist.barrier()
|
|
end_time = time.time()
|
|
|
|
# Calculate elapsed time
|
|
elapsed_time = end_time - start_time
|
|
print(f"Time taken: {elapsed_time:.6f} seconds")
|
|
|
|
input_ids = input_ids.cuda()
|
|
attention_mask = attention_mask.cuda()
|
|
idx_list = []
|
|
batch_size = input_ids.shape[0]
|
|
|
|
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else tokenizer.eos_token_id
|
|
from verl.workers.rollout.vllm_rollout.vllm_rollout import _pre_process_inputs
|
|
|
|
for i in range(batch_size):
|
|
idx_list.append(_pre_process_inputs(pad_token_id, input_ids[i]))
|
|
print("start generation")
|
|
outputs = llm.generate(prompt_token_ids=idx_list, sampling_params=sampling_params, use_tqdm=False)
|
|
vllm_output = outputs[0].cuda()
|
|
if torch.distributed.get_rank() == 0:
|
|
print(f"hf response: {tokenizer.batch_decode(response)}")
|
|
print(f"vllm response: {tokenizer.batch_decode(vllm_output)}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|