Files
verl/tests/ray/test_colocated_workers.py
Shawn/Yuxuan Tong b00f77d855 [dev] feat: immigrate from yapf & pylint to ruff based on pre-commit (#1010)
> [!WARNING]
> We are [immigrating to `ruff` as the linter and formatter and
`pre-commit` as the managing
tool](https://github.com/volcengine/verl/pull/1010).
>
> If your branch is based on a previous commit using `yapf` and
`pylint`, simply merging might trigger overwhelming linting errors,
while **you are only expected to resolve ones in the files related to
your PR**.
>
> To resolve this issue, please try the following workaround to only
include the files you **really changed** in the PR:
>
> 1. In your branch, fix linting and format with `ruff`: `ruff check
--fix && ruff-format`
> 2. Squash into a single commit in a new branch: `git reset --soft
$(git merge-base main HEAD) && git add -A && git commit -m "feat: ..."`
> 3. Merge with the latest main: `git merge origin/main`
> 4. Force push to your branch: `git push --force`

We add the reminder above to the documentation to tell contributors how
to avoid overwhelming linting errors.

### Motivation

According to dicussion in #896, this PR immigrates from yapf & pylint to
ruff based on pre-commit, which allows unified version control and
automatic hook on committing.

### Summary

The `pre-commit` hook and CI

- checks staged / committed files in commits / PR's
- checks all files each month (This should fail before we fix all the
files by the ruff standard)

### Explanation for the Failing CI Workflow `pre-commit`

For now, we only apply `ruff format` and `ruff check --fix` **without
resolving all the errors**, since there are too many errors to resolve,
which causes the CI workflow `pre-commit` fails.

For resolving the remaining errors, we leave to future commits.
Specifically, the `pre-commit` hook and CI will require every commit to
fix its related files with `ruff`, which will fix all the files
incrementally.

### Reviewing Suggestion

The commit
3d93f51ba8
is huge since we apply `ruff` to all the files. To review the main
changes, please check the commits before and after it.
2025-04-18 07:49:31 -07:00

84 lines
2.7 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import ray
from verl import DataProto
from verl.single_controller.base import Worker
from verl.single_controller.base.decorator import Dispatch, register
from verl.single_controller.ray.base import (
RayClassWithInitArgs,
RayResourcePool,
RayWorkerGroup,
create_colocated_worker_cls,
)
@ray.remote
class Actor(Worker):
def __init__(self) -> None:
super().__init__()
@register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO)
def add(self, data: DataProto):
data.batch["a"] += self.rank
return data
@ray.remote
class Critic(Worker):
def __init__(self, config) -> None:
super().__init__()
self.config = config
@register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO)
def sub(self, data: DataProto):
data.batch["a"] -= self.config["b"]
return data
def test_colocated_workers():
ray.init()
import torch
data = DataProto.from_dict({"a": torch.zeros(10)})
# create separate workers on the same resource pool
actor_cls = RayClassWithInitArgs(cls=Actor)
critic_cls = RayClassWithInitArgs(cls=Critic, config={"b": 10})
resource_pool = RayResourcePool(process_on_nodes=[2])
actor_wg = RayWorkerGroup(resource_pool=resource_pool, ray_cls_with_init=actor_cls)
critic_wg = RayWorkerGroup(resource_pool=resource_pool, ray_cls_with_init=critic_cls)
expected_actor_output = actor_wg.add(data)
expected_critic_output = critic_wg.sub(data)
# create colocated workers
cls_dict = {"actor": actor_cls, "critic": critic_cls}
ray_cls_with_init = create_colocated_worker_cls(cls_dict)
wg_dict = RayWorkerGroup(resource_pool=resource_pool, ray_cls_with_init=ray_cls_with_init)
spawn_wg = wg_dict.spawn(prefix_set=cls_dict.keys())
colocated_actor_wg = spawn_wg["actor"]
colocated_critic_wg = spawn_wg["critic"]
actor_output = colocated_actor_wg.add(data)
critic_output = colocated_critic_wg.sub(data)
torch.testing.assert_close(expected_actor_output.batch, actor_output.batch, atol=0, rtol=0)
torch.testing.assert_close(expected_critic_output.batch, critic_output.batch, atol=0, rtol=0)
ray.shutdown()