Files
verl/tests/e2e/arithmetic_sequence/rl/main_trainer.py
Shawn/Yuxuan Tong b00f77d855 [dev] feat: immigrate from yapf & pylint to ruff based on pre-commit (#1010)
> [!WARNING]
> We are [immigrating to `ruff` as the linter and formatter and
`pre-commit` as the managing
tool](https://github.com/volcengine/verl/pull/1010).
>
> If your branch is based on a previous commit using `yapf` and
`pylint`, simply merging might trigger overwhelming linting errors,
while **you are only expected to resolve ones in the files related to
your PR**.
>
> To resolve this issue, please try the following workaround to only
include the files you **really changed** in the PR:
>
> 1. In your branch, fix linting and format with `ruff`: `ruff check
--fix && ruff-format`
> 2. Squash into a single commit in a new branch: `git reset --soft
$(git merge-base main HEAD) && git add -A && git commit -m "feat: ..."`
> 3. Merge with the latest main: `git merge origin/main`
> 4. Force push to your branch: `git push --force`

We add the reminder above to the documentation to tell contributors how
to avoid overwhelming linting errors.

### Motivation

According to dicussion in #896, this PR immigrates from yapf & pylint to
ruff based on pre-commit, which allows unified version control and
automatic hook on committing.

### Summary

The `pre-commit` hook and CI

- checks staged / committed files in commits / PR's
- checks all files each month (This should fail before we fix all the
files by the ruff standard)

### Explanation for the Failing CI Workflow `pre-commit`

For now, we only apply `ruff format` and `ruff check --fix` **without
resolving all the errors**, since there are too many errors to resolve,
which causes the CI workflow `pre-commit` fails.

For resolving the remaining errors, we leave to future commits.
Specifically, the `pre-commit` hook and CI will require every commit to
fix its related files with `ruff`, which will fix all the files
incrementally.

### Reviewing Suggestion

The commit
3d93f51ba8
is huge since we apply `ruff` to all the files. To review the main
changes, please check the commits before and after it.
2025-04-18 07:49:31 -07:00

162 lines
5.5 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Using FSDPTrainer
"""
import os
import hydra
import ray
import torch
from transformers import AutoTokenizer
from verl import DataProto
from verl.trainer.ppo.ray_trainer import RayPPOTrainer
from verl.utils.fs import copy_to_local
def make_reward_function(tokenizer, num_examine):
def arithmetic_sequence_reward_function(data: DataProto, return_dict: bool = False):
from tests.e2e.envs.digit_completion.task import compute_reward
reward_tensor = torch.zeros_like(data.batch["responses"], dtype=torch.float32)
for i in range(data.batch.batch_size[0]):
data_item = data[i] # DataProtoItem
prompt_ids = data_item.batch["prompts"]
prompt_length = prompt_ids.shape[-1]
# extract raw prompt
valid_prompt_length = data_item.batch["attention_mask"][:prompt_length].sum()
valid_prompt_ids = prompt_ids[-valid_prompt_length:]
# extract response
response_ids = data_item.batch["responses"]
response_length = response_ids.shape[-1]
response_mask = data.batch["attention_mask"][i][-response_length:]
valid_response_length = data_item.batch["attention_mask"][prompt_length:].sum()
valid_response_ids = response_ids[:valid_response_length]
# decode
prompt = tokenizer.decode(valid_prompt_ids)
response = tokenizer.decode(valid_response_ids)
# remove bos and eos
prompt = prompt.replace(tokenizer.sep_token, "")
response = response.replace(tokenizer.eos_token, "")
if i < num_examine:
print(prompt, response)
reward_output = compute_reward(prompt, response)
dense_reward = reward_output[0].tolist()
ground_truth_response = reward_output[1]["ground_truth_response"]
if len(dense_reward) > 0:
last_reward = dense_reward[-1]
else:
if len(ground_truth_response) == 0:
last_reward = 1
else:
last_reward = 0
# pad to response_length
for _ in range(reward_tensor.shape[-1] - len(dense_reward)):
dense_reward.append(last_reward)
dense_reward = torch.as_tensor(dense_reward, dtype=torch.float32, device=reward_tensor.device)
reward_tensor[i] = dense_reward * response_mask
if return_dict:
return {"reward_tensor": reward_tensor}
else:
return reward_tensor
return arithmetic_sequence_reward_function
@hydra.main(config_path="../../../../verl/trainer/config", config_name="ppo_trainer", version_base=None)
def main(config):
ray.init(
runtime_env={
"env_vars": {
"MEGATRON_USE_CUDA_TIMER": "0",
"MEGATRON_START_PROCESS_TIMER": "False",
"TOKENIZERS_PARALLELISM": "true",
"NCCL_DEBUG": "WARN",
}
}
)
# print initial config
from pprint import pprint
from omegaconf import OmegaConf
pprint(OmegaConf.to_container(config, resolve=True)) # resolve=True will eval symbol values
# print the config
# print initial config
print("Config after normalizing batch_size")
pprint(OmegaConf.to_container(config, resolve=True)) # resolve=True will eval symbol values
# download the checkpoint from hdfs
local_path = copy_to_local(config.actor_rollout_ref.model.path)
local_path = os.path.expanduser(local_path)
# instantiate tokenizern
tokenizer = AutoTokenizer.from_pretrained(local_path)
print(f"Tokenizer vocab_size: {tokenizer.vocab_size}")
# define worker classes
from verl.trainer.ppo.ray_trainer import ResourcePoolManager, Role
from verl.workers.fsdp_workers import ActorRolloutRefWorker, CriticWorker
role_worker_mapping = {
Role.ActorRollout: ray.remote(ActorRolloutRefWorker),
Role.Critic: ray.remote(CriticWorker),
}
global_pool_id = "global_pool"
resource_pool_spec = {
global_pool_id: [config.trainer.n_gpus_per_node] * config.trainer.nnodes,
}
mapping = {
Role.ActorRollout: global_pool_id,
Role.Critic: global_pool_id,
}
# use reward model
if config.algorithm.use_kl_in_reward or config.actor_rollout_ref.actor.use_kl_loss:
role_worker_mapping[Role.RefPolicy] = ray.remote(ActorRolloutRefWorker)
mapping[Role.RefPolicy] = global_pool_id
reward_fn = make_reward_function(tokenizer=tokenizer, num_examine=1)
resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping)
trainer = RayPPOTrainer(
config=config,
tokenizer=tokenizer,
role_worker_mapping=role_worker_mapping,
resource_pool_manager=resource_pool_manager,
reward_fn=reward_fn,
val_reward_fn=reward_fn,
)
trainer.init_workers()
trainer.fit()
if __name__ == "__main__":
main()