mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 13:43:50 +08:00
> [!WARNING]
> We are [immigrating to `ruff` as the linter and formatter and
`pre-commit` as the managing
tool](https://github.com/volcengine/verl/pull/1010).
>
> If your branch is based on a previous commit using `yapf` and
`pylint`, simply merging might trigger overwhelming linting errors,
while **you are only expected to resolve ones in the files related to
your PR**.
>
> To resolve this issue, please try the following workaround to only
include the files you **really changed** in the PR:
>
> 1. In your branch, fix linting and format with `ruff`: `ruff check
--fix && ruff-format`
> 2. Squash into a single commit in a new branch: `git reset --soft
$(git merge-base main HEAD) && git add -A && git commit -m "feat: ..."`
> 3. Merge with the latest main: `git merge origin/main`
> 4. Force push to your branch: `git push --force`
We add the reminder above to the documentation to tell contributors how
to avoid overwhelming linting errors.
### Motivation
According to dicussion in #896, this PR immigrates from yapf & pylint to
ruff based on pre-commit, which allows unified version control and
automatic hook on committing.
### Summary
The `pre-commit` hook and CI
- checks staged / committed files in commits / PR's
- checks all files each month (This should fail before we fix all the
files by the ruff standard)
### Explanation for the Failing CI Workflow `pre-commit`
For now, we only apply `ruff format` and `ruff check --fix` **without
resolving all the errors**, since there are too many errors to resolve,
which causes the CI workflow `pre-commit` fails.
For resolving the remaining errors, we leave to future commits.
Specifically, the `pre-commit` hook and CI will require every commit to
fix its related files with `ruff`, which will fix all the files
incrementally.
### Reviewing Suggestion
The commit
3d93f51ba8
is huge since we apply `ruff` to all the files. To review the main
changes, please check the commits before and after it.
197 lines
7.8 KiB
Python
197 lines
7.8 KiB
Python
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Preprocess the dataset to parquet format
|
|
"""
|
|
|
|
import argparse
|
|
import os
|
|
from functools import partial
|
|
|
|
from datasets import concatenate_datasets, load_dataset
|
|
|
|
from verl.utils.hdfs_io import copy, makedirs
|
|
|
|
|
|
def example_map_fn(example, idx, process_fn, data_source, ability, split):
|
|
question, solution = process_fn(example)
|
|
data = {
|
|
"data_source": data_source,
|
|
"prompt": [{"role": "user", "content": question}],
|
|
"ability": ability,
|
|
"reward_model": {"style": "rule", "ground_truth": solution},
|
|
"extra_info": {"split": split, "index": idx},
|
|
}
|
|
return data
|
|
|
|
|
|
def build_aime2024_dataset():
|
|
def process_aime2024(example):
|
|
return example["Problem"], str(example["Answer"])
|
|
|
|
data_source = "Maxwell-Jia/AIME_2024"
|
|
print(f"Loading the {data_source} dataset from huggingface...", flush=True)
|
|
dataset = load_dataset(data_source, split="train")
|
|
map_fn = partial(
|
|
example_map_fn, process_fn=process_aime2024, data_source=data_source, ability="English", split="test"
|
|
)
|
|
dataset = dataset.map(map_fn, with_indices=True, remove_columns=dataset.column_names)
|
|
return dataset
|
|
|
|
|
|
def build_gpqa_dimond_dataset():
|
|
import random
|
|
|
|
GPQA_QUERY_TEMPLATE = "Answer the following multiple choice question. The last line of your response should be of the following format: 'Answer: $LETTER' (without quotes) where LETTER is one of ABCD. Think step by step before answering.\n\n{Question}\n\nA) {A}\nB) {B}\nC) {C}\nD) {D}"
|
|
|
|
def process_gpqa_diamond(example):
|
|
choices = [example["Incorrect Answer 1"], example["Incorrect Answer 2"], example["Incorrect Answer 3"]]
|
|
random.shuffle(choices)
|
|
gold_index = random.randint(0, 3)
|
|
choices.insert(gold_index, example["Correct Answer"])
|
|
query_prompt = GPQA_QUERY_TEMPLATE.format(
|
|
A=choices[0], B=choices[1], C=choices[2], D=choices[3], Question=example["Question"]
|
|
)
|
|
gold_choice = "ABCD"[gold_index]
|
|
return query_prompt, gold_choice
|
|
|
|
data_source = "Idavidrein/gpqa"
|
|
print(f"Loading the {data_source} dataset from huggingface...", flush=True)
|
|
|
|
dataset = load_dataset(data_source, "gpqa_diamond", split="train")
|
|
map_fn = partial(
|
|
example_map_fn, process_fn=process_gpqa_diamond, data_source=data_source, ability="Math", split="test"
|
|
)
|
|
dataset = dataset.map(map_fn, with_indices=True, remove_columns=dataset.column_names)
|
|
return dataset
|
|
|
|
|
|
def build_cnmo2024_dataset():
|
|
def process_cnmo2024(example):
|
|
return example["question"], example["answer"]
|
|
|
|
data_source = "opencompass/LiveMathBench"
|
|
print(f"Loading the {data_source} dataset from huggingface...", flush=True)
|
|
|
|
dataset_en = load_dataset(data_source, "v202412_CNMO_en", split="test")
|
|
map_fn_en = partial(
|
|
example_map_fn, process_fn=process_cnmo2024, data_source="opencompass/cnmo2024_en", ability="Math", split="test"
|
|
)
|
|
dataset_en = dataset_en.map(map_fn_en, with_indices=True, remove_columns=dataset_en.column_names)
|
|
|
|
dataset_zh = load_dataset(data_source, "v202412_CNMO_cn", split="test")
|
|
map_fn_zh = partial(
|
|
example_map_fn, process_fn=process_cnmo2024, data_source="opencompass/cnmo2024_zh", ability="Math", split="test"
|
|
)
|
|
dataset_zh = dataset_zh.map(map_fn_zh, with_indices=True, remove_columns=dataset_zh.column_names)
|
|
|
|
dataset = concatenate_datasets([dataset_en, dataset_zh])
|
|
return dataset
|
|
|
|
|
|
def build_livecodebench_dataset():
|
|
import base64
|
|
import json
|
|
import pickle
|
|
import zlib
|
|
|
|
def process_livecodebench(example):
|
|
# Construct Query Prompt
|
|
# From https://github.com/LiveCodeBench/LiveCodeBench/blob/998c52d394b836f15fff3b9a29866191108ff81b/lcb_runner/prompts/code_generation.py#L140
|
|
query_prompt = (
|
|
"You will be given a question (problem specification) and will generate a correct Python program that matches the specification and passes all tests.\n\n"
|
|
f"Question: {example['question_content']}\n\n"
|
|
)
|
|
if example["starter_code"]:
|
|
query_prompt += (
|
|
"You will use the following starter code to write the solution to the problem and enclose your code within delimiters.\n"
|
|
f"```python\n{example['starter_code']}\n```"
|
|
)
|
|
else:
|
|
query_prompt += (
|
|
"Read the inputs from stdin solve the problem and write the answer to stdout (do not directly test on the sample inputs). Enclose your code within delimiters as follows. Ensure that when the python program runs, it reads the inputs, runs the algorithm and writes output to STDOUT."
|
|
"```python\n# YOUR CODE HERE\n```"
|
|
)
|
|
|
|
# Construct test cases
|
|
public_test_cases = json.loads(example["public_test_cases"])
|
|
try:
|
|
private_test_cases = json.loads(example["private_test_cases"])
|
|
except:
|
|
private_test_cases = json.loads(
|
|
pickle.loads(zlib.decompress(base64.b64decode(example["private_test_cases"].encode("utf-8"))))
|
|
)
|
|
full_test_cases = public_test_cases + private_test_cases
|
|
|
|
metadata = json.loads(example["metadata"])
|
|
test_cases = {
|
|
"inputs": [t["input"] for t in full_test_cases],
|
|
"outputs": [t["output"] for t in full_test_cases],
|
|
"fn_name": metadata.get("func_name", None),
|
|
}
|
|
text_cases_compressed = base64.b64encode(zlib.compress(pickle.dumps(json.dumps(test_cases)))).decode("utf-8")
|
|
return query_prompt, text_cases_compressed
|
|
|
|
data_source = "livecodebench/code_generation_lite"
|
|
print(f"Loading the {data_source} dataset from huggingface...", flush=True)
|
|
dataset = load_dataset(data_source, split="test")
|
|
# R1 Evaluation use LiveCodeBench 24.08-25.01
|
|
dataset = dataset.filter(lambda line: "2024-08-00T00:00:00" <= line["contest_date"] < "2025-01-00T00:00:00")
|
|
map_fn = partial(
|
|
example_map_fn, process_fn=process_livecodebench, data_source=data_source, ability="Code", split="test"
|
|
)
|
|
|
|
dataset = dataset.map(map_fn, with_indices=True, remove_columns=dataset.column_names, num_proc=8)
|
|
return dataset
|
|
|
|
|
|
TASK2DATA = {
|
|
"aime2024": build_aime2024_dataset,
|
|
"gpqa_diamond": build_gpqa_dimond_dataset,
|
|
"cnmo2024": build_cnmo2024_dataset,
|
|
"livecodebench": build_livecodebench_dataset,
|
|
}
|
|
SUPPORTED_TASKS = TASK2DATA.keys()
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--local_dir", default="~/data/r1")
|
|
parser.add_argument("--hdfs_dir", default=None)
|
|
parser.add_argument("--tasks", default="all")
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.tasks.lower() == "all":
|
|
args.tasks = SUPPORTED_TASKS
|
|
else:
|
|
args.tasks = [task.strip() for task in args.tasks.split(",") if task.strip()]
|
|
for task in args.tasks:
|
|
if task not in SUPPORTED_TASKS:
|
|
raise NotImplementedError(f"{task} has not been supported.")
|
|
|
|
datasets = []
|
|
for task in args.tasks:
|
|
datasets.append(TASK2DATA[task]())
|
|
test_dataset = concatenate_datasets(datasets)
|
|
|
|
local_dir = args.local_dir
|
|
hdfs_dir = args.hdfs_dir
|
|
|
|
test_dataset.to_parquet(os.path.join(local_dir, "test.parquet"))
|
|
|
|
if hdfs_dir is not None:
|
|
makedirs(hdfs_dir)
|
|
|
|
copy(src=local_dir, dst=hdfs_dir)
|