Files
verl/tests/models/test_engine.py
Chi Zhang 8ec9bf64a1 [ci] fix: fix test_engine ci (#3771)
### What does this PR do?

- fix test_engine ci for latest transformers

### Checklist Before Starting

- [ ] Search for similar PRs. Paste at least one query link here: ...
- [ ] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [ ] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [ ] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
2025-10-15 12:11:17 +08:00

365 lines
12 KiB
Python

# Copyright 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
os.environ["NCCL_DEBUG"] = "WARN"
from functools import partial
import numpy as np
import pytest
import ray
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from transformers import AutoConfig, AutoModelForCausalLM, AutoModelForTokenClassification, Qwen3Config, Qwen3MoeConfig
from verl import DataProto
from verl.single_controller.ray import RayClassWithInitArgs, RayResourcePool, RayWorkerGroup
from verl.trainer.config import CheckpointConfig
from verl.utils.model import compute_position_id_with_mask, create_random_mask
from verl.utils.torch_functional import logprobs_from_logits_naive
from verl.workers.config import (
ActorConfig,
CriticConfig,
FSDPEngineConfig,
FSDPOptimizerConfig,
HFModelConfig,
McoreEngineConfig,
McoreOptimizerConfig,
)
from verl.workers.roles import ActorWorker, CriticWorker
from verl.workers.roles.utils.losses import ppo_loss, sft_loss
@pytest.mark.parametrize("strategy", ["megatron", "fsdp", "fsdp2"])
def test_actor_engine(strategy):
ray.init()
path = os.path.expanduser("~/models/Qwen/Qwen2.5-0.5B-Instruct")
model_config = HFModelConfig(path=path)
if strategy == "megatron":
engine_config = McoreEngineConfig(
forward_only=False,
use_mbridge=False,
tensor_model_parallel_size=2,
pipeline_model_parallel_size=2,
context_parallel_size=2,
)
optimizer_config = McoreOptimizerConfig(lr_decay_steps=10)
elif strategy in ["fsdp", "fsdp2"]:
engine_config = FSDPEngineConfig(
forward_only=False, fsdp_size=4, strategy=strategy, ulysses_sequence_parallel_size=2
)
optimizer_config = FSDPOptimizerConfig()
else:
raise NotImplementedError(f"strategy {strategy} is not supported")
config = ActorConfig(
model_config=model_config,
engine=engine_config,
strategy=strategy,
ppo_micro_batch_size_per_gpu=256,
ppo_mini_batch_size=4,
optim=optimizer_config,
use_dynamic_bsz=True,
rollout_n=1,
)
ray_cls_with_init = RayClassWithInitArgs(cls=ray.remote(ActorWorker), config=config)
resource_pool = RayResourcePool(process_on_nodes=[8])
wg = RayWorkerGroup(resource_pool=resource_pool, ray_cls_with_init=ray_cls_with_init)
# init model
wg.init_model()
batch_size = 8
seqlen = 32
response_length = seqlen // 2
torch.manual_seed(1)
np.random.seed(1)
input_ids = torch.randint(0, model_config.hf_config.vocab_size, (batch_size, seqlen))
attention_mask = create_random_mask(
input_ids=input_ids, max_ratio_of_valid_token=0.8, max_ratio_of_left_padding=0.2, min_ratio_of_valid_token=0.6
)
position_ids = compute_position_id_with_mask(attention_mask)
global_token_num = torch.sum(attention_mask, dim=-1).tolist()
print(input_ids.float().mean(), attention_mask.float().mean())
responses = input_ids[:, response_length:]
response_mask = attention_mask[:, response_length:]
assert torch.all(response_mask[:, 0] == 1)
data = DataProto.from_single_dict(
{
"input_ids": input_ids,
"attention_mask": attention_mask,
"position_ids": position_ids,
"responses": responses,
"response_mask": response_mask,
},
meta_info={"temperature": 1.0, "global_token_num": global_token_num},
)
sft_loss_ = partial(sft_loss, config=config)
# eval
output = wg.compute_log_prob(data)
# load hf model and compare results with hf model
hf_model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16)
hf_output = hf_model(input_ids, attention_mask=attention_mask)
hf_logprobs = logprobs_from_logits_naive(
hf_output.logits[:, -response_length - 1 : -1, :].float(), input_ids[:, -response_length:]
)
hf_logprobs_mean = torch.mean(hf_logprobs * response_mask)
mcore_logprobs_mean = torch.mean(output.batch["old_log_probs"] * response_mask)
torch.testing.assert_close(hf_logprobs_mean, mcore_logprobs_mean, atol=1e-3, rtol=1e-2)
data = data.union(output)
wg.set_loss_fn(sft_loss_)
# train for one step
metrics = wg.update_actor(data)
print(metrics)
# add ppo data
data.batch["advantages"] = torch.rand_like(responses, dtype=torch.float32)
data.batch["ref_log_prob"] = torch.rand_like(responses, dtype=torch.float32)
# set ppo loss
ppo_loss_ = partial(ppo_loss, config=config)
wg.set_loss_fn(ppo_loss_)
# update again
ppo_metrics = wg.update_actor(data)
print(ppo_metrics)
ray.shutdown()
def create_model():
from transformers import Qwen3Config
config = Qwen3Config(num_hidden_layers=2, num_labels=1)
model = AutoModelForTokenClassification.from_config(config)
assert model.config.num_labels == 1
path = os.path.expanduser("~/models/test_model")
model.save_pretrained(path)
config.save_pretrained(path)
return path
@pytest.mark.parametrize("strategy", ["megatron", "fsdp", "fsdp2"])
def test_critic_engine(strategy):
ray.init()
path = create_model()
model_config = HFModelConfig(path=path, load_tokenizer=False)
if strategy == "megatron":
engine_config = McoreEngineConfig(
forward_only=False,
use_mbridge=False,
tensor_model_parallel_size=2,
pipeline_model_parallel_size=2,
context_parallel_size=2,
)
optimizer_config = McoreOptimizerConfig(lr_decay_steps=10)
elif strategy in ["fsdp", "fsdp2"]:
engine_config = FSDPEngineConfig(
forward_only=False, fsdp_size=4, strategy=strategy, ulysses_sequence_parallel_size=2
)
optimizer_config = FSDPOptimizerConfig()
else:
raise NotImplementedError(f"strategy {strategy} is not supported")
config = CriticConfig(
model_config=model_config,
engine=engine_config,
strategy=strategy,
ppo_micro_batch_size_per_gpu=256,
ppo_mini_batch_size=4,
optim=optimizer_config,
use_dynamic_bsz=True,
rollout_n=1,
)
ray_cls_with_init = RayClassWithInitArgs(cls=ray.remote(CriticWorker), config=config)
resource_pool = RayResourcePool(process_on_nodes=[8])
wg = RayWorkerGroup(resource_pool=resource_pool, ray_cls_with_init=ray_cls_with_init)
# init model
wg.init_model()
batch_size = 8
seqlen = 32
response_length = seqlen // 2
torch.manual_seed(1)
np.random.seed(1)
input_ids = torch.randint(0, model_config.hf_config.vocab_size, (batch_size, seqlen))
attention_mask = create_random_mask(
input_ids=input_ids, max_ratio_of_valid_token=0.8, max_ratio_of_left_padding=0.2, min_ratio_of_valid_token=0.6
)
position_ids = compute_position_id_with_mask(attention_mask)
global_token_num = torch.sum(attention_mask, dim=-1).tolist()
print(input_ids.float().mean(), attention_mask.float().mean())
responses = input_ids[:, response_length:]
response_mask = attention_mask[:, response_length:]
assert torch.all(response_mask[:, 0] == 1)
data = DataProto.from_single_dict(
{
"input_ids": input_ids,
"attention_mask": attention_mask,
"position_ids": position_ids,
"responses": responses,
"response_mask": response_mask,
},
meta_info={"temperature": 1.0, "global_token_num": global_token_num},
)
# eval
output = wg.compute_values(data)
# load hf model and compare results with hf model
with torch.device("cuda"):
hf_model = AutoModelForTokenClassification.from_pretrained(
path, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
)
hf_output = hf_model(input_ids.cuda(), attention_mask=attention_mask.cuda())
hf_values = hf_output.logits[:, -response_length - 1 : -1, :].float().squeeze(-1).cpu()
hf_values_mean = torch.mean(hf_values * response_mask)
engine_values = torch.mean(output.batch["values"] * response_mask)
torch.testing.assert_close(hf_values_mean, engine_values, atol=1e-2, rtol=1e-2)
data = data.union(output)
# add ppo data
data.batch["values"] = torch.rand_like(responses, dtype=torch.float32)
data.batch["returns"] = torch.rand_like(responses, dtype=torch.float32)
# update again
ppo_metrics = wg.update_critic(data)
print(ppo_metrics)
ray.shutdown()
def create_actor_model(tmp_path, config):
model = AutoModelForCausalLM.from_config(config)
path = os.path.join(tmp_path, "test_model")
model.save_pretrained(path)
config.save_pretrained(path)
return path
def _worker(rank: int, world_size: int, rendezvous_file: str, strategy: str, model_path: str):
torch.cuda.set_device(rank)
dist.init_process_group(
backend="nccl",
init_method=f"file://{rendezvous_file}",
rank=rank,
world_size=world_size,
)
ref_model_config = AutoConfig.from_pretrained(model_path)
with torch.device("meta"):
ref_model = AutoModelForCausalLM.from_config(ref_model_config)
from verl.workers.engine import BaseEngine, EngineRegistry
# construct configs
model_config = HFModelConfig(path=model_path, load_tokenizer=False)
if strategy == "megatron":
engine_config = McoreEngineConfig(
forward_only=False,
use_mbridge=True,
tensor_model_parallel_size=2,
pipeline_model_parallel_size=2,
context_parallel_size=1,
)
optimizer_config = McoreOptimizerConfig(lr_decay_steps=10)
elif strategy in ["fsdp", "fsdp2"]:
engine_config = FSDPEngineConfig(
forward_only=False, fsdp_size=4, strategy=strategy, ulysses_sequence_parallel_size=2
)
optimizer_config = FSDPOptimizerConfig()
else:
raise NotImplementedError(f"strategy {strategy} is not supported")
checkpoint_config = CheckpointConfig()
# build model engine
engine: BaseEngine = EngineRegistry.new(
model_type="language_model",
backend=engine_config.strategy,
model_config=model_config,
engine_config=engine_config,
optimizer_config=optimizer_config,
checkpoint_config=checkpoint_config,
)
engine.initialize()
# get per tensor parameter
per_tensor_params = engine.get_per_tensor_param()
ref_state_dict = ref_model.state_dict()
# load ground truth and compare
for key, value in per_tensor_params:
assert key in ref_state_dict, f"{key} not in ref_state_dict"
assert value.shape == ref_state_dict[key].shape, (
f"{key} shape not equal, {value.shape} != {ref_state_dict[key].shape}"
)
if rank == 0:
print(key, value.shape)
dist.barrier()
dist.destroy_process_group()
@pytest.mark.parametrize("world_size", [8])
@pytest.mark.parametrize("config", [Qwen3Config(num_hidden_layers=2), Qwen3MoeConfig(num_hidden_layers=2)])
@pytest.mark.parametrize("strategy", ["megatron", "fsdp", "fsdp2"])
def test_per_tensor_generator(world_size, tmp_path, config, strategy):
rendezvous_file = str(tmp_path / "rdzv_mask")
os.makedirs(os.path.dirname(rendezvous_file), exist_ok=True)
# create a model
model_path = create_actor_model(tmp_path, config)
# spawn workers
mp.spawn(
fn=_worker,
args=(world_size, rendezvous_file, strategy, model_path),
nprocs=world_size,
join=True,
)