Files
verl/tests/single_controller/test_worker_group_basics.py

127 lines
3.9 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
e2e test verl.single_controller.ray
"""
import ray
import torch
from verl.single_controller.base.decorator import Dispatch, Execute, collect_all_to_all, register
from verl.single_controller.base.worker import Worker
from verl.single_controller.ray.base import RayClassWithInitArgs, RayResourcePool, RayWorkerGroup
def two_to_all_dispatch_fn(worker_group, *args, **kwargs):
"""
Assume the input is a list of 2. Duplicate the input interleaved and pass to each worker.
"""
for arg in args:
assert len(arg) == 2
for i in range(worker_group.world_size - 2):
arg.append(arg[i % 2])
for k, v in kwargs.items():
assert len(v) == 2
for i in range(worker_group.world_size - 2):
v.append(v[i % 2])
return args, kwargs
@ray.remote
class TestActor(Worker):
# TODO: pass *args and **kwargs is bug prone and not very convincing
def __init__(self, x) -> None:
super().__init__()
self._x = x
def foo(self, y):
return self._x + y
@register(dispatch_mode=Dispatch.ALL_TO_ALL, execute_mode=Execute.RANK_ZERO)
def foo_rank_zero(self, x, y):
return self._x + y + x
@register(Dispatch.ONE_TO_ALL, blocking=False)
def foo_one_to_all(self, x, y):
return self._x + y + x
@register(Dispatch.ALL_TO_ALL, blocking=False)
def foo_all_to_all(self, x, y):
return self._x + y + x
@register(dispatch_mode={"dispatch_fn": two_to_all_dispatch_fn, "collect_fn": collect_all_to_all})
def foo_custom(self, x, y):
return self._x + y + x
@ray.remote(num_gpus=0.1)
def remote_call_wg(worker_names):
class_with_args = RayClassWithInitArgs(cls=TestActor, x=2)
worker_group = RayWorkerGroup.from_detached(worker_names=worker_names, ray_cls_with_init=class_with_args, name_prefix=None)
print(worker_group.worker_names)
output_ref = worker_group.foo_custom(x=[1, 2], y=[5, 6])
assert output_ref == [8, 10, 8, 10]
output_ref = worker_group.foo_rank_zero(x=1, y=2)
assert output_ref == 5
return worker_group.worker_names
def add_one(data):
data = data.to("cuda")
data += 1
data = data.to("cpu")
return data
def test_basics():
ray.init(num_cpus=100)
# create 4 workers, each hold a GPU
resource_pool = RayResourcePool([4], use_gpu=True)
class_with_args = RayClassWithInitArgs(cls=TestActor, x=2)
worker_group = RayWorkerGroup(resource_pool=resource_pool, ray_cls_with_init=class_with_args, name_prefix="worker_group_basic")
print(worker_group.worker_names)
# this will wait for all the results
output = worker_group.execute_all_sync("foo", y=3)
assert output == [5, 5, 5, 5]
# this is a list of object reference. It won't block.
output_ref = worker_group.execute_all_async("foo", y=4)
print(output_ref)
assert ray.get(output_ref) == [6, 6, 6, 6]
output_ref = worker_group.foo_one_to_all(x=1, y=2)
assert ray.get(output_ref) == [5, 5, 5, 5]
output_ref = worker_group.foo_all_to_all(x=[1, 2, 3, 4], y=[5, 6, 7, 8])
assert ray.get(output_ref) == [8, 10, 12, 14]
print(ray.get(remote_call_wg.remote(worker_group.worker_names)))
output = worker_group.execute_func_rank_zero(add_one, torch.ones(2, 2))
torch.testing.assert_close(output, torch.ones(2, 2) + 1)
ray.shutdown()
if __name__ == "__main__":
test_basics()