Files
verl/tests/single_controller/test_data_transfer.py

108 lines
3.3 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
In this test, we instantiate a data parallel worker with 8 GPUs
"""
import ray
import tensordict
import torch
from codetiming import Timer
from torch import distributed as dist
from verl import DataProto
from verl.single_controller.base import Worker
from verl.single_controller.base.decorator import Dispatch, register
from verl.single_controller.ray import RayClassWithInitArgs, RayResourcePool, RayWorkerGroup
from verl.utils.ray_utils import parallel_put
@ray.remote
class DummyWorker(Worker):
def __init__(self):
super().__init__()
dist.init_process_group()
@register(dispatch_mode=Dispatch.DP_COMPUTE, blocking=False)
def do_nothing(self, data):
for key in data.batch.keys():
data.batch[key] += 1
if tensordict.__version__ >= "0.5.0":
data.batch = data.batch.consolidate()
return data
def test_data_transfer():
ray.init()
# construct resource pool
resource_pool = RayResourcePool([8])
cls_with_init = RayClassWithInitArgs(cls=DummyWorker)
# construct worker group
wg = RayWorkerGroup(resource_pool, cls_with_init)
# this is real dataset size
batch_size = 4096
seqlen = 32768
data_dict = {}
for i in range(2):
data_dict[str(i)] = torch.randint(0, 10000, (batch_size, seqlen))
data = DataProto.from_dict(tensors=data_dict)
print(data)
# we manually split data here and send to each worker
data_list = data.chunk(wg.world_size)
for i in range(wg.world_size):
# consolidate is necessary
if tensordict.__version__ >= "0.5.0":
data_list[i].batch = data_list[i].batch.consolidate()
with Timer(name="ray.pickle", initial_text=True):
for i in range(wg.world_size):
ray.cloudpickle.pickle.dumps(data_list[i])
with Timer(name="raw.pickle", initial_text=True):
import pickle
for i in range(wg.world_size):
pickle.dumps(data_list[i])
# we put in advance
with Timer(name="put", initial_text=True):
# takes around 40 seconds
data_list_ref = parallel_put(data_list)
# for i in range(wg.world_size):
# data_list[i] = ray.put(data_list[i])
with Timer(name="launch", initial_text=True):
output_ref = wg.do_nothing(data_list_ref)
with Timer(name="get", initial_text=True):
# takes around 40 seconds
output_lst = ray.get(output_ref)
for input_data, output_data in zip(data_list, output_lst):
for key in input_data.batch.keys():
assert torch.all(torch.eq(input_data.batch[key] + 1, output_data.batch[key])), (
input_data.batch[key],
output_data.batch[key],
key,
)
ray.shutdown()