mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 13:43:50 +08:00
### What does this PR do? Refactor profiler CI to a unified way. TODO: - nsys use `save_path` - nsys descrete tests are disabled - torch profiler cc: @davidmlw ### Checklist Before Starting - [ ] Search for similar PRs. Paste at least one query link here: ... - [ ] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc. ### API and Usage Example Global profiler config: ```yaml global_profiler: _target_: verl.utils.profiler.ProfilerConfig tool: null steps: null profile_continuous_steps: false save_path: outputs/profile tool_config: nsys: _target_: verl.utils.profiler.config.NsightToolConfig discrete: false npu: _target_: verl.utils.profiler.config.NPUToolConfig discrete: false contents: [] level: level1 analysis: true torch: _target_: verl.utils.profiler.config.TorchProfilerToolConfig step_start: 0 step_end: null ``` Local profiler config: ```yaml profiler: # Required when using verl.utils.omega_conf_to_dataclass to instantiate dataclass configs _target_: verl.utils.profiler.ProfilerConfig # profiler tool, default same as profiler.tool in global config # choices: nsys, npu, torch tool: ${oc.select:global_profiler.tool,null} # whether enable profile on critic enable: False # Whether to profile all ranks. all_ranks: False # The ranks that will be profiled. [] or [0,1,...] ranks: [] # profile results saving path save_path: ${oc.select:global_profiler.save_path,null} # specific tool config tool_config: ${oc.select:global_profiler.tool_config,null} ``` ### Design & Code Changes > Demonstrate the high-level design if this PR is complex, and list the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [ ] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [ ] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). (If not accessible, please try [the Feishu group (飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
121 lines
3.6 KiB
YAML
121 lines
3.6 KiB
YAML
# Required when using verl.utils.omega_conf_to_dataclass to instantiate dataclass configs
|
|
_target_: verl.workers.config.CriticConfig
|
|
|
|
# Number of rollouts per update (mirrors actor rollout_n)
|
|
rollout_n: ${oc.select:actor_rollout_ref.rollout.n,1}
|
|
|
|
# fsdp or fsdp2 strategy used for critic model training
|
|
strategy: ???
|
|
|
|
# whether to enable the critic worker.
|
|
# by default it is only enabled if advantage estimator is gae
|
|
# set it to True manually if you always want to enable critic worker
|
|
enable: null
|
|
|
|
# optimizer configs
|
|
optim:
|
|
|
|
# Learning rate
|
|
lr: 1e-5
|
|
|
|
# Warmup steps ratio; total steps will be injected at runtime
|
|
lr_warmup_steps_ratio: 0.0
|
|
|
|
# Total training steps (must be overridden at runtime)
|
|
total_training_steps: -1
|
|
|
|
# Weight decay
|
|
weight_decay: 0.01
|
|
|
|
# Prioritized. None, 0 or Negative values mean delegating to lr_warmup_steps_ratio.
|
|
lr_warmup_steps: -1
|
|
|
|
|
|
# model config for the critic
|
|
model:
|
|
|
|
# Path to pretrained model weights
|
|
path: ~/models/deepseek-llm-7b-chat
|
|
|
|
# Tokenizer path (defaults to actor's model path)
|
|
tokenizer_path: ${oc.select:actor_rollout_ref.model.path,"~/models/deepseek-llm-7b-chat"}
|
|
|
|
# Hugging Face config override
|
|
override_config: {}
|
|
|
|
# External model implementation (optional)
|
|
external_lib: ${oc.select:actor_rollout_ref.model.external_lib,null}
|
|
|
|
# Whether to trust remote code from Hugging Face models
|
|
trust_remote_code: ${oc.select:actor_rollout_ref.model.trust_remote_code,false}
|
|
|
|
# PPO mini-batch size per update
|
|
ppo_mini_batch_size: ${oc.select:actor_rollout_ref.actor.ppo_mini_batch_size,256}
|
|
|
|
# [Deprecated] Global micro batch size
|
|
ppo_micro_batch_size: null
|
|
|
|
# Local per-GPU micro batch size
|
|
ppo_micro_batch_size_per_gpu: ${oc.select:.ppo_micro_batch_size,null}
|
|
|
|
# Whether to automatically adjust batch size at runtime
|
|
use_dynamic_bsz: ${oc.select:actor_rollout_ref.actor.use_dynamic_bsz,false}
|
|
|
|
# Max tokens per GPU in one PPO batch (doubled for critic)
|
|
ppo_max_token_len_per_gpu: 32768
|
|
|
|
# Max token length per GPU in forward pass
|
|
forward_max_token_len_per_gpu: ${.ppo_max_token_len_per_gpu}
|
|
|
|
# Number of PPO epochs per batch
|
|
ppo_epochs: ${oc.select:actor_rollout_ref.actor.ppo_epochs,1}
|
|
|
|
# Shuffle training data across PPO epochs
|
|
shuffle: ${oc.select:actor_rollout_ref.actor.shuffle,false}
|
|
|
|
# PPO value function clipping range
|
|
cliprange_value: 0.5
|
|
|
|
# Loss aggregation mode: "token-mean", "seq-mean-token-sum", or "seq-mean-token-mean"
|
|
loss_agg_mode: ${oc.select:actor_rollout_ref.actor.loss_agg_mode,token-mean}
|
|
|
|
# checkpoint configs
|
|
checkpoint:
|
|
|
|
# Target dataclass for this configuration
|
|
_target_: verl.trainer.config.CheckpointConfig
|
|
|
|
# What to include in saved checkpoints
|
|
# with 'hf_model' you can save whole model as hf format, now only use sharded model checkpoint to save space
|
|
save_contents: ['model', 'optimizer', 'extra']
|
|
|
|
# What to include when loading checkpoints
|
|
load_contents: ${.save_contents}
|
|
|
|
# Whether to save checkpoints asynchronously. Only effective for Megatron as of now.
|
|
async_save: False
|
|
|
|
# profile the critic model in `update_policy`
|
|
profiler:
|
|
|
|
# Required when using verl.utils.omega_conf_to_dataclass to instantiate dataclass configs
|
|
_target_: verl.utils.profiler.ProfilerConfig
|
|
|
|
# profiler tool, default same as profiler.tool in global config
|
|
# choices: nsys, npu, torch
|
|
tool: ${oc.select:global_profiler.tool,null}
|
|
|
|
# whether enable profile on critic
|
|
enable: False
|
|
|
|
# Whether to profile all ranks.
|
|
all_ranks: False
|
|
|
|
# The ranks that will be profiled. [] or [0,1,...]
|
|
ranks: []
|
|
|
|
# profile results saving path
|
|
save_path: ${oc.select:global_profiler.save_path,null}
|
|
|
|
# specific tool config
|
|
tool_config: ${oc.select:actor_rollout_ref.actor.tool_config,null} |