Files
verl/verl/trainer/config/critic/critic.yaml
Blue Space 545f899844 [BREAKING] [perf] refactor: Profiler api refactor (#2894)
### What does this PR do?

Refactor profiler CI to a unified way.

TODO:

- nsys use `save_path`
- nsys descrete tests are disabled
- torch profiler

cc: @davidmlw 

### Checklist Before Starting

- [ ] Search for similar PRs. Paste at least one query link here: ...
- [ ] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

Global profiler config:

```yaml
global_profiler:
  _target_: verl.utils.profiler.ProfilerConfig
  tool: null
  steps: null
  profile_continuous_steps: false
  save_path: outputs/profile
  tool_config:
    nsys:
      _target_: verl.utils.profiler.config.NsightToolConfig
      discrete: false
    npu:
      _target_: verl.utils.profiler.config.NPUToolConfig
      discrete: false
      contents: []
      level: level1
      analysis: true
    torch:
      _target_: verl.utils.profiler.config.TorchProfilerToolConfig
      step_start: 0
      step_end: null
```

Local profiler config:

```yaml
profiler:

  # Required when using verl.utils.omega_conf_to_dataclass to instantiate dataclass configs
  _target_: verl.utils.profiler.ProfilerConfig

  # profiler tool, default same as profiler.tool in global config
  # choices: nsys, npu, torch
  tool: ${oc.select:global_profiler.tool,null}

  # whether enable profile on critic
  enable: False

  # Whether to profile all ranks.
  all_ranks: False

  # The ranks that will be profiled. [] or [0,1,...]
  ranks: []

  # profile results saving path
  save_path: ${oc.select:global_profiler.save_path,null}

  # specific tool config
  tool_config: ${oc.select:global_profiler.tool_config,null}
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [ ] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [ ] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
2025-08-11 09:52:41 +08:00

121 lines
3.6 KiB
YAML

# Required when using verl.utils.omega_conf_to_dataclass to instantiate dataclass configs
_target_: verl.workers.config.CriticConfig
# Number of rollouts per update (mirrors actor rollout_n)
rollout_n: ${oc.select:actor_rollout_ref.rollout.n,1}
# fsdp or fsdp2 strategy used for critic model training
strategy: ???
# whether to enable the critic worker.
# by default it is only enabled if advantage estimator is gae
# set it to True manually if you always want to enable critic worker
enable: null
# optimizer configs
optim:
# Learning rate
lr: 1e-5
# Warmup steps ratio; total steps will be injected at runtime
lr_warmup_steps_ratio: 0.0
# Total training steps (must be overridden at runtime)
total_training_steps: -1
# Weight decay
weight_decay: 0.01
# Prioritized. None, 0 or Negative values mean delegating to lr_warmup_steps_ratio.
lr_warmup_steps: -1
# model config for the critic
model:
# Path to pretrained model weights
path: ~/models/deepseek-llm-7b-chat
# Tokenizer path (defaults to actor's model path)
tokenizer_path: ${oc.select:actor_rollout_ref.model.path,"~/models/deepseek-llm-7b-chat"}
# Hugging Face config override
override_config: {}
# External model implementation (optional)
external_lib: ${oc.select:actor_rollout_ref.model.external_lib,null}
# Whether to trust remote code from Hugging Face models
trust_remote_code: ${oc.select:actor_rollout_ref.model.trust_remote_code,false}
# PPO mini-batch size per update
ppo_mini_batch_size: ${oc.select:actor_rollout_ref.actor.ppo_mini_batch_size,256}
# [Deprecated] Global micro batch size
ppo_micro_batch_size: null
# Local per-GPU micro batch size
ppo_micro_batch_size_per_gpu: ${oc.select:.ppo_micro_batch_size,null}
# Whether to automatically adjust batch size at runtime
use_dynamic_bsz: ${oc.select:actor_rollout_ref.actor.use_dynamic_bsz,false}
# Max tokens per GPU in one PPO batch (doubled for critic)
ppo_max_token_len_per_gpu: 32768
# Max token length per GPU in forward pass
forward_max_token_len_per_gpu: ${.ppo_max_token_len_per_gpu}
# Number of PPO epochs per batch
ppo_epochs: ${oc.select:actor_rollout_ref.actor.ppo_epochs,1}
# Shuffle training data across PPO epochs
shuffle: ${oc.select:actor_rollout_ref.actor.shuffle,false}
# PPO value function clipping range
cliprange_value: 0.5
# Loss aggregation mode: "token-mean", "seq-mean-token-sum", or "seq-mean-token-mean"
loss_agg_mode: ${oc.select:actor_rollout_ref.actor.loss_agg_mode,token-mean}
# checkpoint configs
checkpoint:
# Target dataclass for this configuration
_target_: verl.trainer.config.CheckpointConfig
# What to include in saved checkpoints
# with 'hf_model' you can save whole model as hf format, now only use sharded model checkpoint to save space
save_contents: ['model', 'optimizer', 'extra']
# What to include when loading checkpoints
load_contents: ${.save_contents}
# Whether to save checkpoints asynchronously. Only effective for Megatron as of now.
async_save: False
# profile the critic model in `update_policy`
profiler:
# Required when using verl.utils.omega_conf_to_dataclass to instantiate dataclass configs
_target_: verl.utils.profiler.ProfilerConfig
# profiler tool, default same as profiler.tool in global config
# choices: nsys, npu, torch
tool: ${oc.select:global_profiler.tool,null}
# whether enable profile on critic
enable: False
# Whether to profile all ranks.
all_ranks: False
# The ranks that will be profiled. [] or [0,1,...]
ranks: []
# profile results saving path
save_path: ${oc.select:global_profiler.save_path,null}
# specific tool config
tool_config: ${oc.select:actor_rollout_ref.actor.tool_config,null}