mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 21:53:50 +08:00
### What does this PR do?
- As title
### Checklist Before Starting
- [ ] Search for similar PRs. Paste at least one query link here: ...
- [ ] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
- `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
- Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`
### Test
> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.
### API and Usage Example
> Demonstrate how the API changes if any, and provide usage example(s)
if possible.
```python
# Add code snippet or script demonstrating how to use this
```
### Design & Code Changes
> Demonstrate the high-level design if this PR is complex, and list the
specific changes.
### Checklist Before Submitting
> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.
- [ ] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [ ] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
107 lines
3.8 KiB
Python
107 lines
3.8 KiB
Python
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Preprocess the MATH-lighteval dataset to parquet format
|
|
"""
|
|
|
|
import argparse
|
|
import json
|
|
import os
|
|
|
|
import datasets
|
|
|
|
from verl.utils.hdfs_io import copy, makedirs
|
|
from verl.utils.reward_score.math_reward import last_boxed_only_string, remove_boxed
|
|
|
|
|
|
def extract_solution(solution_str):
|
|
return remove_boxed(last_boxed_only_string(solution_str))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--local_dir", default=None)
|
|
parser.add_argument("--hdfs_dir", default=None)
|
|
parser.add_argument("--local_dataset_path", default=None, help="The local path to the raw dataset, if it exists.")
|
|
parser.add_argument(
|
|
"--local_save_dir", default="~/data/math", help="The save directory for the preprocessed dataset."
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
local_dataset_path = args.local_dataset_path
|
|
|
|
# 'lighteval/MATH' is no longer available on huggingface.
|
|
# Use mirror repo: DigitalLearningGmbH/MATH-lighteval
|
|
data_source = "DigitalLearningGmbH/MATH-lighteval"
|
|
print(f"Loading the {data_source} dataset from huggingface...", flush=True)
|
|
if local_dataset_path is not None:
|
|
dataset = datasets.load_dataset(
|
|
local_dataset_path,
|
|
)
|
|
else:
|
|
dataset = datasets.load_dataset(
|
|
data_source,
|
|
)
|
|
|
|
train_dataset = dataset["train"]
|
|
test_dataset = dataset["test"]
|
|
|
|
instruction_following = "Let's think step by step and output the final answer within \\boxed{}."
|
|
|
|
# add a row to each data item that represents a unique id
|
|
def make_map_fn(split):
|
|
def process_fn(example, idx):
|
|
question = example.pop("problem")
|
|
|
|
question = question + " " + instruction_following
|
|
|
|
answer = example.pop("solution")
|
|
solution = extract_solution(answer)
|
|
data = {
|
|
"data_source": data_source,
|
|
"prompt": [{"role": "user", "content": question}],
|
|
"ability": "math",
|
|
"reward_model": {"style": "rule", "ground_truth": solution},
|
|
"extra_info": {"split": split, "index": idx},
|
|
}
|
|
return data
|
|
|
|
return process_fn
|
|
|
|
train_dataset = train_dataset.map(function=make_map_fn("train"), with_indices=True)
|
|
test_dataset = test_dataset.map(function=make_map_fn("test"), with_indices=True)
|
|
|
|
local_save_dir = args.local_dir
|
|
if local_save_dir is not None:
|
|
print("Warning: Argument 'local_dir' is deprecated. Please use 'local_save_dir' instead.")
|
|
else:
|
|
local_save_dir = args.local_save_dir
|
|
|
|
local_dir = os.path.expanduser(local_save_dir)
|
|
hdfs_dir = args.hdfs_dir
|
|
|
|
train_dataset.to_parquet(os.path.join(local_dir, "train.parquet"))
|
|
test_dataset.to_parquet(os.path.join(local_dir, "test.parquet"))
|
|
# Save one example as JSON for reference
|
|
example = train_dataset[0]
|
|
with open(os.path.join(local_dir, "train_example.json"), "w") as f:
|
|
json.dump(example, f, indent=2)
|
|
example = test_dataset[0]
|
|
with open(os.path.join(local_dir, "test_example.json"), "w") as f:
|
|
json.dump(example, f, indent=2)
|
|
if hdfs_dir is not None:
|
|
makedirs(hdfs_dir)
|
|
|
|
copy(src=local_dir, dst=hdfs_dir)
|