mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 13:43:50 +08:00
As initially mentioned in https://github.com/volcengine/verl/discussions/1941, having structured configuration classes in verl makes argument passing easier for testing and validation. This is an extended thread on the current implementation of configuration schema in verl. Related PRs: - https://github.com/volcengine/verl/pull/2117 - https://github.com/volcengine/verl/pull/2621 # Motivation By moving from loose `omegaconfig.DictConfig`-based parameters to structured dataclasses, we gain: - Type safety & IDE support when accessing fields (e.g. cfg.optim.lr). - Validation hooks via __post_init__ in each class. - Immutable defaults with controlled mutability (e.g., an extra field). - Seamless Hydra/OmegaConf integration and easy per-recipe extension. # Core: BaseConfig hydra natively provides support for converting DictConfig to dataclass, but dataclass does not support accessing attribute via `get()`. We introduce a base class to provide backward compatibility and make the change less abrupt for existing users. All config dataclasses inherit from BaseConfig, which: - Implements collections.abc.Mapping → dict-like iteration/access. - Freezes attributes once set, unless listed in _mutable_fields. - Provides an `extra: dict[str, Any]` for unchecked extensions. ```python @dataclass class BaseConfig(collections.abc.Mapping): """Dict-like, frozen dataclass with opt-in mutability.""" _mutable_fields: set[str] = {"extra"} extra: dict[str, Any] = field(default_factory=dict) def __setattr__(self, name: str, value): if name in self.__dict__ and name not in self._mutable_fields: raise FrozenInstanceError(f"Field '{name}' is frozen") super().__setattr__(name, value) # Mapping methods: get, __getitem__, __iter__, __len__ … ``` # Example Config Classes (verl/trainer/config) Each sub-component of the trainer has its own dataclass, inheriting BaseConfig. ```yaml: critic: checkpoint: _target_: verl.trainer.config.CheckpointConfig save_contents: ["model","optimizer","extra"] load_contents: ["model","optimizer","extra"] async_save: false ``` Definition: ```python @dataclass class CheckpointConfig(BaseConfig): """What to save/load and async behavior.""" save_contents: list[str] = field(default_factory=lambda: ["model","optimizer","extra"]) load_contents: list[str] = field(default_factory=lambda: ["model","optimizer","extra"]) async_save: bool = False def __post_init__(self): # validation checks go here after initialization ckpt_cfg = CheckpointConfig(async_save=True) print(ckpt_cfg.save_contents) print(ckpt_cfg.get("save_contents", default_value)) print(ckpt_cfg["save_contents"]) # converting hydra-generated omegaconf.DictConfig to the dataclass config: from verl.utils.config import omegaconf_to_dataclass ckpt_cfg_from_cli = omegaconf_to_dataclass(config.critic.checkpoint) ``` # Extending existing config classes Because now configs become structured, unexpected keys would raise exceptions. To add new keys, there are two ways: ## Explicit class extensions: ```python from verl.workers.config import FSDPActorConfig @dataclass class SPPOActorConfig(FSDPActorConfig): """Add SPPO-specific temperature/penalty.""" sppo_eta: float = 1.0 ``` When using yaml or from command line, update the target config class: ```yaml hydra: searchpath: - file://verl/trainer/config defaults: - ppo_trainer # base trainer config - _self_ # then apply these overrides actor_rollout_ref: actor: _target_: recipe.sppo.config.SPPOActorConfig # **new target dataclass required for extension ** sppo_eta: 1.0 ``` or directly from command line: ```bash python main_sppo.py \ actor_rollout_ref.actor._target_=recipe.sppo.config.SPPOActorConfig \ actor_rollout_ref.actor.sppo_eta=1.0 ``` ## Leverage the `extra` field Adding more keys to the `extra` field of any dataclass that inherits from `BaseConfig` also works. This way there's no need to define your own dataclass in python: ```yaml hydra: searchpath: - file://verl/trainer/config defaults: - ppo_trainer # base trainer config - _self_ # then apply these overrides actor_rollout_ref: actor: extra: sppo_eta: 1.0 ``` # Declaring mutable fields For historical reasons some fields in the configs are mutated inplace in the codebase such as batch size for data/sequence parallelism. We are in the process of deprecating this kind of behavior. However, if you want to intentionally mutate one field, specify it with the `_mutable_fields` attr: ```python @dataclass class CheckpointConfig(BaseConfig): """What to save/load and async behavior.""" _mutable_fields = BaseConfig._mutable_fields | {"save_contents"} # mark save_contents as mutable. save_contents: list[str] = field(default_factory=lambda: ["model","optimizer","extra"]) load_contents: list[str] = field(default_factory=lambda: ["model","optimizer","extra"]) async_save: bool = False ``` # Other helpful resources verl default trainer configs combines the following config files together, specified in the `_defaults_` field: https://github.com/volcengine/verl/blob/main/verl/trainer/config/ppo_trainer.yaml#L1-L36 - verl/trainer/config/ppo_trainer.yaml # main config for entrypoint - verl/trainer/config/actor/dp_actor.yaml - verl/trainer/config/critic/dp_critic.yaml - verl/trainer/config/reward_model/dp_reward_model.yaml - verl/trainer/config/rollout/rollout.yaml To quickly peek the default full config in a single file, you can check the auto-generated full config in https://github.com/volcengine/verl/blob/main/verl/trainer/config/_generated_ppo_trainer.yaml # Change log and impact on existing code This PR converts the following fields to structured dataclass in the training pipeline. More can be done in future PRs (contributions from the community is welcome) - [x] actor_rollout_ref.actor - [x] critic - [ ] actor_rollout_ref.rollout - [ ] actor_rollout_ref.ref - [ ] reward_model - [ ] data - [ ] trainer Changes needed for existing code that added new fields to config: - see recipe/sppo for an example - `OmegaConf.to_container(self.config.model.get("override_config", OmegaConf.create()))` now has to manually changed to `self.config.model.get("override_config", {})`. Because OmegaConf.to_container expects a DictConfig but config.model.override_config is already a dict. # Other Breaking Changes critic.optim.lr for megatron changed from 1e-6 to 1e-5 --------- Signed-off-by: ShareLer <ShareLe@163.com> Co-authored-by: devin-ai-integration[bot] <158243242+devin-ai-integration[bot]@users.noreply.github.com> Co-authored-by: Joel <wuxibin@bytedance.com> Co-authored-by: Cheetah <1659275352@qq.com> Co-authored-by: 杨睿 <yangruipis@163.com> Co-authored-by: X. HU <huxiaobo@zju.edu.cn> Co-authored-by: Le Xue <48175490+ShareLer@users.noreply.github.com> Co-authored-by: Ziheng Jiang <ziheng@apache.org> Co-authored-by: Blue Space <57280232+ETOgaosion@users.noreply.github.com> Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
113 lines
3.4 KiB
YAML
113 lines
3.4 KiB
YAML
# Required when using verl.utils.omega_conf_to_dataclass to instantiate dataclass configs
|
|
_target_: verl.workers.config.CriticConfig
|
|
|
|
# Number of rollouts per update (mirrors actor rollout_n)
|
|
rollout_n: ${oc.select:actor_rollout_ref.rollout.n,1}
|
|
|
|
# fsdp or fsdp2 strategy used for critic model training
|
|
strategy: ???
|
|
|
|
# whether to enable the critic worker.
|
|
# by default it is only enabled if advantage estimator is gae
|
|
# set it to True manually if you always want to enable critic worker
|
|
enable: null
|
|
|
|
# optimizer configs
|
|
optim:
|
|
|
|
# Learning rate
|
|
lr: 1e-5
|
|
|
|
# Warmup steps ratio; total steps will be injected at runtime
|
|
lr_warmup_steps_ratio: 0.0
|
|
|
|
# Total training steps (must be overridden at runtime)
|
|
total_training_steps: -1
|
|
|
|
# Weight decay
|
|
weight_decay: 0.01
|
|
|
|
# Prioritized. None, 0 or Negative values mean delegating to lr_warmup_steps_ratio.
|
|
lr_warmup_steps: -1
|
|
|
|
|
|
# model config for the critic
|
|
model:
|
|
|
|
# Path to pretrained model weights
|
|
path: ~/models/deepseek-llm-7b-chat
|
|
|
|
# Tokenizer path (defaults to actor's model path)
|
|
tokenizer_path: ${oc.select:actor_rollout_ref.model.path,"~/models/deepseek-llm-7b-chat"}
|
|
|
|
# Hugging Face config override
|
|
override_config: {}
|
|
|
|
# External model implementation (optional)
|
|
external_lib: ${oc.select:actor_rollout_ref.model.external_lib,null}
|
|
|
|
# Whether to trust remote code from Hugging Face models
|
|
trust_remote_code: ${oc.select:actor_rollout_ref.model.trust_remote_code,false}
|
|
|
|
# PPO mini-batch size per update
|
|
ppo_mini_batch_size: ${oc.select:actor_rollout_ref.actor.ppo_mini_batch_size,256}
|
|
|
|
# [Deprecated] Global micro batch size
|
|
ppo_micro_batch_size: null
|
|
|
|
# Local per-GPU micro batch size
|
|
ppo_micro_batch_size_per_gpu: ${oc.select:.ppo_micro_batch_size,null}
|
|
|
|
# Whether to automatically adjust batch size at runtime
|
|
use_dynamic_bsz: ${oc.select:actor_rollout_ref.actor.use_dynamic_bsz,false}
|
|
|
|
# Max tokens per GPU in one PPO batch (doubled for critic)
|
|
ppo_max_token_len_per_gpu: 32768
|
|
|
|
# Max token length per GPU in forward pass
|
|
forward_max_token_len_per_gpu: ${.ppo_max_token_len_per_gpu}
|
|
|
|
# Number of PPO epochs per batch
|
|
ppo_epochs: ${oc.select:actor_rollout_ref.actor.ppo_epochs,1}
|
|
|
|
# Shuffle training data across PPO epochs
|
|
shuffle: ${oc.select:actor_rollout_ref.actor.shuffle,false}
|
|
|
|
# PPO value function clipping range
|
|
cliprange_value: 0.5
|
|
|
|
# Loss aggregation mode: "token-mean", "seq-mean-token-sum", or "seq-mean-token-mean"
|
|
loss_agg_mode: ${oc.select:actor_rollout_ref.actor.loss_agg_mode,token-mean}
|
|
|
|
# checkpoint configs
|
|
checkpoint:
|
|
|
|
# Target dataclass for this configuration
|
|
_target_: verl.trainer.config.CheckpointConfig
|
|
|
|
# What to include in saved checkpoints
|
|
# with 'hf_model' you can save whole model as hf format, now only use sharded model checkpoint to save space
|
|
save_contents: ['model', 'optimizer', 'extra']
|
|
|
|
# What to include when loading checkpoints
|
|
load_contents: ${.save_contents}
|
|
|
|
# Whether to save checkpoints asynchronously. Only effective for Megatron as of now.
|
|
async_save: False
|
|
|
|
# profiler configs
|
|
# the corresponding dataclass is verl.utils.profiler.ProfilerConfig.
|
|
profiler:
|
|
|
|
# Required when using verl.utils.omega_conf_to_dataclass to instantiate dataclass configs
|
|
_target_: verl.utils.profiler.ProfilerConfig
|
|
|
|
# True for each task has its own database, False for all tasks in one training step share one database.
|
|
discrete: False
|
|
|
|
# Whether to profile all ranks.
|
|
all_ranks: False
|
|
|
|
# The ranks that will be profiled. [] or [0,1,...]
|
|
ranks: []
|