mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 13:43:50 +08:00
### What does this PR do? > Add **concise** overview of what this PR aims to achieve or accomplish. Reference related GitHub issues and PRs that help with the review. Fixes Issue with metric name validation when using MLFlow. Keeps replacement of `@` with `_at_` for backward compatibility. Resolves https://github.com/volcengine/verl/issues/1242 ### Checklist Before Starting - [x] Search for similar PRs. Paste at least one query link here: N/A - [x] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc. Adds a unit tests to validate metric name cleanup ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### Design & Code Changes > Demonstrate the high-level design if this PR is complex, and list the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [x ] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [x] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [x] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [x] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [x] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). (If not accessible, please try [the Feishu group (飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
495 lines
17 KiB
Python
495 lines
17 KiB
Python
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
A unified tracking interface that supports logging data to different backend
|
|
"""
|
|
|
|
import dataclasses
|
|
import json
|
|
import os
|
|
from enum import Enum
|
|
from functools import partial
|
|
from pathlib import Path
|
|
from typing import Any
|
|
|
|
|
|
class Tracking:
|
|
"""A unified tracking interface for logging experiment data to multiple backends.
|
|
|
|
This class provides a centralized way to log experiment metrics, parameters, and artifacts
|
|
to various tracking backends including WandB, MLflow, SwanLab, TensorBoard, and console.
|
|
|
|
Attributes:
|
|
supported_backend: List of supported tracking backends.
|
|
logger: Dictionary of initialized logger instances for each backend.
|
|
"""
|
|
|
|
supported_backend = [
|
|
"wandb",
|
|
"mlflow",
|
|
"swanlab",
|
|
"vemlp_wandb",
|
|
"tensorboard",
|
|
"console",
|
|
"clearml",
|
|
"trackio",
|
|
"file",
|
|
]
|
|
|
|
def __init__(self, project_name, experiment_name, default_backend: str | list[str] = "console", config=None):
|
|
if isinstance(default_backend, str):
|
|
default_backend = [default_backend]
|
|
for backend in default_backend:
|
|
if backend == "tracking":
|
|
import warnings
|
|
|
|
warnings.warn("`tracking` logger is deprecated. use `wandb` instead.", DeprecationWarning, stacklevel=2)
|
|
else:
|
|
assert backend in self.supported_backend, f"{backend} is not supported"
|
|
|
|
self.logger = {}
|
|
|
|
if "tracking" in default_backend or "wandb" in default_backend:
|
|
import wandb
|
|
|
|
settings = None
|
|
if config and config["trainer"].get("wandb_proxy", None):
|
|
settings = wandb.Settings(https_proxy=config["trainer"]["wandb_proxy"])
|
|
wandb.init(project=project_name, name=experiment_name, config=config, settings=settings)
|
|
self.logger["wandb"] = wandb
|
|
|
|
if "trackio" in default_backend:
|
|
import trackio
|
|
|
|
trackio.init(project=project_name, name=experiment_name, config=config)
|
|
self.logger["trackio"] = trackio
|
|
|
|
if "mlflow" in default_backend:
|
|
import os
|
|
|
|
import mlflow
|
|
|
|
MLFLOW_TRACKING_URI = os.environ.get("MLFLOW_TRACKING_URI", "sqlite:////tmp/mlruns.db")
|
|
mlflow.set_tracking_uri(MLFLOW_TRACKING_URI)
|
|
|
|
# Project_name is actually experiment_name in MLFlow
|
|
# If experiment does not exist, will create a new experiment
|
|
experiment = mlflow.set_experiment(project_name)
|
|
mlflow.start_run(experiment_id=experiment.experiment_id, run_name=experiment_name)
|
|
mlflow.log_params(_compute_mlflow_params_from_objects(config))
|
|
self.logger["mlflow"] = _MlflowLoggingAdapter()
|
|
|
|
if "swanlab" in default_backend:
|
|
import os
|
|
|
|
import swanlab
|
|
|
|
SWANLAB_API_KEY = os.environ.get("SWANLAB_API_KEY", None)
|
|
SWANLAB_LOG_DIR = os.environ.get("SWANLAB_LOG_DIR", "swanlog")
|
|
SWANLAB_MODE = os.environ.get("SWANLAB_MODE", "cloud")
|
|
if SWANLAB_API_KEY:
|
|
swanlab.login(SWANLAB_API_KEY) # NOTE: previous login information will be overwritten
|
|
|
|
if config is None:
|
|
config = {} # make sure config is not None, otherwise **config will raise error
|
|
swanlab.init(
|
|
project=project_name,
|
|
experiment_name=experiment_name,
|
|
config={"FRAMEWORK": "verl", **config},
|
|
logdir=SWANLAB_LOG_DIR,
|
|
mode=SWANLAB_MODE,
|
|
)
|
|
self.logger["swanlab"] = swanlab
|
|
|
|
if "vemlp_wandb" in default_backend:
|
|
import os
|
|
|
|
import volcengine_ml_platform
|
|
from volcengine_ml_platform import wandb as vemlp_wandb
|
|
|
|
volcengine_ml_platform.init(
|
|
ak=os.environ["VOLC_ACCESS_KEY_ID"],
|
|
sk=os.environ["VOLC_SECRET_ACCESS_KEY"],
|
|
region=os.environ["MLP_TRACKING_REGION"],
|
|
)
|
|
|
|
vemlp_wandb.init(
|
|
project=project_name,
|
|
name=experiment_name,
|
|
config=config,
|
|
sync_tensorboard=True,
|
|
)
|
|
self.logger["vemlp_wandb"] = vemlp_wandb
|
|
|
|
if "tensorboard" in default_backend:
|
|
self.logger["tensorboard"] = _TensorboardAdapter(project_name, experiment_name)
|
|
|
|
if "console" in default_backend:
|
|
from verl.utils.logger import LocalLogger
|
|
|
|
self.console_logger = LocalLogger(print_to_console=True)
|
|
self.logger["console"] = self.console_logger
|
|
|
|
if "clearml" in default_backend:
|
|
self.logger["clearml"] = ClearMLLogger(project_name, experiment_name, config)
|
|
|
|
if "file" in default_backend:
|
|
self.logger["file"] = FileLogger(project_name, experiment_name)
|
|
|
|
def log(self, data, step, backend=None):
|
|
for default_backend, logger_instance in self.logger.items():
|
|
if backend is None or default_backend in backend:
|
|
logger_instance.log(data=data, step=step)
|
|
|
|
def __del__(self):
|
|
if "wandb" in self.logger:
|
|
self.logger["wandb"].finish(exit_code=0)
|
|
if "swanlab" in self.logger:
|
|
self.logger["swanlab"].finish()
|
|
if "vemlp_wandb" in self.logger:
|
|
self.logger["vemlp_wandb"].finish(exit_code=0)
|
|
if "tensorboard" in self.logger:
|
|
self.logger["tensorboard"].finish()
|
|
if "clearml" in self.logger:
|
|
self.logger["clearml"].finish()
|
|
if "trackio" in self.logger:
|
|
self.logger["trackio"].finish()
|
|
if "file" in self.logger:
|
|
self.logger["file"].finish()
|
|
|
|
|
|
class ClearMLLogger:
|
|
def __init__(self, project_name: str, experiment_name: str, config):
|
|
self.project_name = project_name
|
|
self.experiment_name = experiment_name
|
|
|
|
import clearml
|
|
|
|
self._task: clearml.Task = clearml.Task.init(
|
|
task_name=experiment_name,
|
|
project_name=project_name,
|
|
continue_last_task=True,
|
|
output_uri=False,
|
|
)
|
|
|
|
self._task.connect_configuration(config, name="Hyperparameters")
|
|
|
|
def _get_logger(self):
|
|
return self._task.get_logger()
|
|
|
|
def log(self, data, step):
|
|
import numpy as np
|
|
import pandas as pd
|
|
|
|
# logs = self._rewrite_logs(data)
|
|
logger = self._get_logger()
|
|
for k, v in data.items():
|
|
title, series = k.split("/", 1)
|
|
|
|
if isinstance(v, int | float | np.floating | np.integer):
|
|
logger.report_scalar(
|
|
title=title,
|
|
series=series,
|
|
value=v,
|
|
iteration=step,
|
|
)
|
|
elif isinstance(v, pd.DataFrame):
|
|
logger.report_table(
|
|
title=title,
|
|
series=series,
|
|
table_plot=v,
|
|
iteration=step,
|
|
)
|
|
else:
|
|
logger.warning(
|
|
f'Trainer is attempting to log a value of "{v}" of type {type(v)} for key "{k}". This '
|
|
f"invocation of ClearML logger's function is incorrect so this attribute was dropped. "
|
|
)
|
|
|
|
def finish(self):
|
|
self._task.close()
|
|
|
|
|
|
class FileLogger:
|
|
def __init__(self, project_name: str, experiment_name: str):
|
|
self.project_name = project_name
|
|
self.experiment_name = experiment_name
|
|
|
|
self.filepath = os.getenv("VERL_FILE_LOGGER_PATH", None)
|
|
if self.filepath is None:
|
|
root_path = os.path.expanduser(os.getenv("VERL_FILE_LOGGER_ROOT", "."))
|
|
directory = os.path.join(root_path, self.project_name)
|
|
os.makedirs(directory, exist_ok=True)
|
|
self.filepath = os.path.join(directory, f"{self.experiment_name}.jsonl")
|
|
print(f"Creating file logger at {self.filepath}")
|
|
self.fp = open(self.filepath, "w")
|
|
|
|
def log(self, data, step):
|
|
data = {"step": step, "data": data}
|
|
self.fp.write(json.dumps(data) + "\n")
|
|
|
|
def finish(self):
|
|
self.fp.close()
|
|
|
|
|
|
class _TensorboardAdapter:
|
|
def __init__(self, project_name, experiment_name):
|
|
import os
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
tensorboard_dir = os.environ.get("TENSORBOARD_DIR", f"tensorboard_log/{project_name}/{experiment_name}")
|
|
os.makedirs(tensorboard_dir, exist_ok=True)
|
|
print(f"Saving tensorboard log to {tensorboard_dir}.")
|
|
self.writer = SummaryWriter(tensorboard_dir)
|
|
|
|
def log(self, data, step):
|
|
for key in data:
|
|
self.writer.add_scalar(key, data[key], step)
|
|
|
|
def finish(self):
|
|
self.writer.close()
|
|
|
|
|
|
class _MlflowLoggingAdapter:
|
|
def __init__(self):
|
|
import logging
|
|
import re
|
|
|
|
self.logger = logging.getLogger(__name__)
|
|
# MLflow metric key validation logic:
|
|
# https://github.com/mlflow/mlflow/blob/master/mlflow/utils/validation.py#L157C12-L157C44
|
|
# Only characters allowed: slashes, alphanumerics, underscores, periods, dashes, colons,
|
|
# and spaces.
|
|
self._invalid_chars_pattern = re.compile(
|
|
r"[^/\w.\- :]"
|
|
) # Allowed: slashes, alphanumerics, underscores, periods, dashes, colons, and spaces.
|
|
|
|
def log(self, data, step):
|
|
import mlflow
|
|
|
|
def sanitize_key(key):
|
|
# First replace @ with _at_ for backward compatibility
|
|
sanitized = key.replace("@", "_at_")
|
|
# Then replace any other invalid characters with _
|
|
sanitized = self._invalid_chars_pattern.sub("_", sanitized)
|
|
if sanitized != key:
|
|
self.logger.warning(
|
|
"[MLflow] Metric key '%s' sanitized to '%s' due to invalid characters.", key, sanitized
|
|
)
|
|
return sanitized
|
|
|
|
results = {sanitize_key(k): v for k, v in data.items()}
|
|
mlflow.log_metrics(metrics=results, step=step)
|
|
|
|
|
|
def _compute_mlflow_params_from_objects(params) -> dict[str, Any]:
|
|
if params is None:
|
|
return {}
|
|
|
|
return _flatten_dict(_transform_params_to_json_serializable(params, convert_list_to_dict=True), sep="/")
|
|
|
|
|
|
def _transform_params_to_json_serializable(x, convert_list_to_dict: bool):
|
|
_transform = partial(_transform_params_to_json_serializable, convert_list_to_dict=convert_list_to_dict)
|
|
|
|
if dataclasses.is_dataclass(x):
|
|
return _transform(dataclasses.asdict(x))
|
|
if isinstance(x, dict):
|
|
return {k: _transform(v) for k, v in x.items()}
|
|
if isinstance(x, list):
|
|
if convert_list_to_dict:
|
|
return {"list_len": len(x)} | {f"{i}": _transform(v) for i, v in enumerate(x)}
|
|
else:
|
|
return [_transform(v) for v in x]
|
|
if isinstance(x, Path):
|
|
return str(x)
|
|
if isinstance(x, Enum):
|
|
return x.value
|
|
|
|
return x
|
|
|
|
|
|
def _flatten_dict(raw: dict[str, Any], *, sep: str) -> dict[str, Any]:
|
|
import pandas as pd
|
|
|
|
ans = pd.json_normalize(raw, sep=sep).to_dict(orient="records")[0]
|
|
assert isinstance(ans, dict)
|
|
return ans
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class ValidationGenerationsLogger:
|
|
project_name: str = None
|
|
experiment_name: str = None
|
|
|
|
def log(self, loggers, samples, step):
|
|
if "wandb" in loggers:
|
|
self.log_generations_to_wandb(samples, step)
|
|
if "swanlab" in loggers:
|
|
self.log_generations_to_swanlab(samples, step)
|
|
if "mlflow" in loggers:
|
|
self.log_generations_to_mlflow(samples, step)
|
|
|
|
if "clearml" in loggers:
|
|
self.log_generations_to_clearml(samples, step)
|
|
if "tensorboard" in loggers:
|
|
self.log_generations_to_tensorboard(samples, step)
|
|
|
|
if "vemlp_wandb" in loggers:
|
|
self.log_generations_to_vemlp_wandb(samples, step)
|
|
|
|
def log_generations_to_vemlp_wandb(self, samples, step):
|
|
from volcengine_ml_platform import wandb as vemlp_wandb
|
|
|
|
self._log_generations_to_wandb(samples, step, vemlp_wandb)
|
|
|
|
def log_generations_to_wandb(self, samples, step):
|
|
import wandb
|
|
|
|
self._log_generations_to_wandb(samples, step, wandb)
|
|
|
|
def _log_generations_to_wandb(self, samples, step, wandb):
|
|
"""Log samples to wandb as a table"""
|
|
|
|
# Create column names for all samples
|
|
columns = ["step"] + sum(
|
|
[[f"input_{i + 1}", f"output_{i + 1}", f"score_{i + 1}"] for i in range(len(samples))], []
|
|
)
|
|
|
|
if not hasattr(self, "validation_table"):
|
|
# Initialize the table on first call
|
|
self.validation_table = wandb.Table(columns=columns)
|
|
|
|
# Create a new table with same columns and existing data
|
|
# Workaround for https://github.com/wandb/wandb/issues/2981#issuecomment-1997445737
|
|
new_table = wandb.Table(columns=columns, data=self.validation_table.data)
|
|
|
|
# Add new row with all data
|
|
row_data = []
|
|
row_data.append(step)
|
|
for sample in samples:
|
|
row_data.extend(sample)
|
|
|
|
new_table.add_data(*row_data)
|
|
|
|
# Update reference and log
|
|
wandb.log({"val/generations": new_table}, step=step)
|
|
self.validation_table = new_table
|
|
|
|
def log_generations_to_swanlab(self, samples, step):
|
|
"""Log samples to swanlab as text"""
|
|
import swanlab
|
|
|
|
swanlab_table = swanlab.echarts.Table()
|
|
|
|
# Create column names
|
|
headers = ["step", "input", "output", "score"]
|
|
|
|
swanlab_row_list = [[step, *sample] for sample in samples]
|
|
swanlab_table.add(headers=headers, rows=swanlab_row_list)
|
|
|
|
# Log to swanlab
|
|
swanlab.log({"val/generations": swanlab_table}, step=step)
|
|
|
|
def log_generations_to_mlflow(self, samples, step):
|
|
"""Log validation generation to mlflow as artifacts"""
|
|
# https://mlflow.org/docs/latest/api_reference/python_api/mlflow.html?highlight=log_artifact#mlflow.log_artifact
|
|
|
|
import json
|
|
import tempfile
|
|
|
|
import mlflow
|
|
|
|
try:
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
validation_gen_step_file = Path(tmp_dir, f"val_step{step}.json")
|
|
row_data = []
|
|
for sample in samples:
|
|
data = {"input": sample[0], "output": sample[1], "score": sample[2]}
|
|
row_data.append(data)
|
|
with open(validation_gen_step_file, "w") as file:
|
|
json.dump(row_data, file)
|
|
mlflow.log_artifact(validation_gen_step_file)
|
|
except Exception as e:
|
|
print(f"WARNING: save validation generation file to mlflow failed with error {e}")
|
|
|
|
def log_generations_to_clearml(self, samples, step):
|
|
"""Log validation generation to clearml as table"""
|
|
|
|
import clearml
|
|
import pandas as pd
|
|
|
|
task: clearml.Task | None = clearml.Task.current_task()
|
|
if task is None:
|
|
return
|
|
|
|
table = [
|
|
{
|
|
"step": step,
|
|
"input": sample[0],
|
|
"output": sample[1],
|
|
"score": sample[2],
|
|
}
|
|
for sample in samples
|
|
]
|
|
|
|
logger = task.get_logger()
|
|
logger.report_table(
|
|
series="Validation generations",
|
|
title="Validation",
|
|
table_plot=pd.DataFrame.from_records(table),
|
|
iteration=step,
|
|
)
|
|
|
|
def log_generations_to_tensorboard(self, samples, step):
|
|
"""Log samples to tensorboard as text"""
|
|
# Initialize tensorboard writer if not exists
|
|
if not hasattr(self, "writer"):
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
# Use the same directory structure as _TensorboardAdapter
|
|
if self.project_name and self.experiment_name:
|
|
default_dir = os.path.join("tensorboard_log", self.project_name, self.experiment_name)
|
|
else:
|
|
default_dir = "tensorboard_log"
|
|
|
|
tensorboard_dir = os.environ.get("TENSORBOARD_DIR", default_dir)
|
|
os.makedirs(tensorboard_dir, exist_ok=True)
|
|
self.writer = SummaryWriter(log_dir=tensorboard_dir)
|
|
|
|
# Format the samples data into readable text
|
|
text_content = f"**Generation Results - Step {step}**\n\n"
|
|
|
|
for i, sample in enumerate(samples):
|
|
text_content += f"### Sample {i + 1}\n"
|
|
|
|
# Assuming sample contains [input, output, score]
|
|
if len(sample) >= 3:
|
|
input_text, output_text, score = sample[0], sample[1], sample[2]
|
|
|
|
text_content += f"**Input:** {input_text}\n\n"
|
|
text_content += f"**Output:** {output_text}\n\n"
|
|
text_content += f"**Score:** {score}\n\n"
|
|
else:
|
|
# Handle cases where sample format might be different
|
|
text_content += f"**Data:** {sample}\n\n"
|
|
|
|
text_content += "---\n\n"
|
|
|
|
# Log to tensorboard as text
|
|
self.writer.add_text("val/generations", text_content, step)
|
|
# Flush to ensure data is written
|
|
self.writer.flush()
|