mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 13:43:50 +08:00
103 lines
3.3 KiB
Python
103 lines
3.3 KiB
Python
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Preprocess Hellaswag dataset.
|
|
|
|
"""
|
|
|
|
import re
|
|
import os
|
|
import datasets
|
|
|
|
from verl.utils.hdfs_io import copy, makedirs
|
|
import argparse
|
|
|
|
|
|
def preprocess(text):
|
|
text = text.strip()
|
|
# NOTE: Brackets are artifacts of the WikiHow dataset portion of HellaSwag.
|
|
text = text.replace(" [title]", ". ")
|
|
text = re.sub("\\[.*?\\]", "", text)
|
|
text = text.replace(" ", " ")
|
|
return text
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--local_dir', default='/opt/tiger/hellaswag')
|
|
parser.add_argument('--hdfs_dir', default=None)
|
|
|
|
args = parser.parse_args()
|
|
|
|
data_source = 'Rowan/hellaswag'
|
|
|
|
dataset = datasets.load_dataset(data_source, trust_remote_code=True)
|
|
|
|
train_dataset = dataset['train']
|
|
val_dataset = dataset['validation']
|
|
test_dataset = dataset['test']
|
|
|
|
instruction = 'Please complete the following sentence.\n'
|
|
|
|
def make_map_fn(split):
|
|
|
|
def process_fn(doc, idx):
|
|
ctx = doc["ctx_a"] + " " + doc["ctx_b"].capitalize()
|
|
query = preprocess(doc["activity_label"] + ": " + ctx)
|
|
choices = [preprocess(ending) for ending in doc["endings"]]
|
|
gold = int(doc["label"])
|
|
|
|
data = {
|
|
"data_source": data_source,
|
|
"prompt": [{
|
|
"role": "user",
|
|
"content": query
|
|
}],
|
|
"ability": "nlp",
|
|
"reward_model": {
|
|
"style": "model",
|
|
"eval": "multiple_choice", # using loglikelihood
|
|
"ground_truth": gold,
|
|
"choices": choices
|
|
},
|
|
"extra_info": {
|
|
'split': split,
|
|
'index': idx
|
|
}
|
|
}
|
|
return data
|
|
|
|
return process_fn
|
|
|
|
# filter data that doesn't have a label
|
|
train_dataset = train_dataset.filter(lambda x: len(x['label']) > 0)
|
|
val_dataset = val_dataset.filter(lambda x: len(x['label']) > 0)
|
|
test_dataset = test_dataset.filter(lambda x: len(x['label']) > 0)
|
|
|
|
train_dataset = train_dataset.map(function=make_map_fn('train'), with_indices=True)
|
|
val_dataset = val_dataset.map(function=make_map_fn('validation'), with_indices=True)
|
|
test_dataset = test_dataset.map(function=make_map_fn('test'), with_indices=True)
|
|
|
|
local_dir = args.local_dir
|
|
hdfs_dir = args.hdfs_dir
|
|
|
|
train_dataset.to_parquet(os.path.join(local_dir, 'train.parquet'))
|
|
val_dataset.to_parquet(os.path.join(local_dir, 'validation.parquet'))
|
|
test_dataset.to_parquet(os.path.join(local_dir, 'test.parquet'))
|
|
|
|
if hdfs_dir is not None:
|
|
makedirs(hdfs_dir)
|
|
|
|
copy(src=local_dir, dst=hdfs_dir)
|