Files
verl/examples/data_preprocess/hellaswag.py
2024-10-31 14:29:44 +08:00

103 lines
3.3 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocess Hellaswag dataset.
"""
import re
import os
import datasets
from verl.utils.hdfs_io import copy, makedirs
import argparse
def preprocess(text):
text = text.strip()
# NOTE: Brackets are artifacts of the WikiHow dataset portion of HellaSwag.
text = text.replace(" [title]", ". ")
text = re.sub("\\[.*?\\]", "", text)
text = text.replace(" ", " ")
return text
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--local_dir', default='/opt/tiger/hellaswag')
parser.add_argument('--hdfs_dir', default=None)
args = parser.parse_args()
data_source = 'Rowan/hellaswag'
dataset = datasets.load_dataset(data_source, trust_remote_code=True)
train_dataset = dataset['train']
val_dataset = dataset['validation']
test_dataset = dataset['test']
instruction = 'Please complete the following sentence.\n'
def make_map_fn(split):
def process_fn(doc, idx):
ctx = doc["ctx_a"] + " " + doc["ctx_b"].capitalize()
query = preprocess(doc["activity_label"] + ": " + ctx)
choices = [preprocess(ending) for ending in doc["endings"]]
gold = int(doc["label"])
data = {
"data_source": data_source,
"prompt": [{
"role": "user",
"content": query
}],
"ability": "nlp",
"reward_model": {
"style": "model",
"eval": "multiple_choice", # using loglikelihood
"ground_truth": gold,
"choices": choices
},
"extra_info": {
'split': split,
'index': idx
}
}
return data
return process_fn
# filter data that doesn't have a label
train_dataset = train_dataset.filter(lambda x: len(x['label']) > 0)
val_dataset = val_dataset.filter(lambda x: len(x['label']) > 0)
test_dataset = test_dataset.filter(lambda x: len(x['label']) > 0)
train_dataset = train_dataset.map(function=make_map_fn('train'), with_indices=True)
val_dataset = val_dataset.map(function=make_map_fn('validation'), with_indices=True)
test_dataset = test_dataset.map(function=make_map_fn('test'), with_indices=True)
local_dir = args.local_dir
hdfs_dir = args.hdfs_dir
train_dataset.to_parquet(os.path.join(local_dir, 'train.parquet'))
val_dataset.to_parquet(os.path.join(local_dir, 'validation.parquet'))
test_dataset.to_parquet(os.path.join(local_dir, 'test.parquet'))
if hdfs_dir is not None:
makedirs(hdfs_dir)
copy(src=local_dir, dst=hdfs_dir)