mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 13:43:50 +08:00
### What does this PR do? > Add concise overview of what this PR aims to achieve or accomplish. Reference related GitHub issues and PRs that help with the review. To prevent Ascend NPU TBE errors caused by resource leakage, ensure that ray.shutdown()is explicitly called after initializing Ray with ray.init(). Address the first issue in https://github.com/volcengine/verl/issues/3316 ### Checklist Before Starting - [x] Search for similar PRs. Paste at least one query link here: ... - [x] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc. ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### Design & Code Changes > Demonstrate the high-level design if this PR is complex, and list the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [x] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [x] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). (If not accessible, please try [the Feishu group (飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).) Co-authored-by: lantian7 <liuchun22@huawei.com>
182 lines
6.6 KiB
Python
182 lines
6.6 KiB
Python
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Note that we don't combine the main with ray_trainer as ray_trainer is used by other main.
|
|
"""
|
|
|
|
import os
|
|
import socket
|
|
|
|
import hydra
|
|
import ray
|
|
from omegaconf import OmegaConf
|
|
|
|
from verl.trainer.ppo.reward import load_reward_manager
|
|
from verl.utils.device import is_cuda_available
|
|
|
|
from .dapo_ray_trainer import RayDAPOTrainer
|
|
|
|
|
|
@hydra.main(config_path="config", config_name="dapo_trainer", version_base=None)
|
|
def main(config):
|
|
run_ppo(config)
|
|
|
|
|
|
def run_ppo(config) -> None:
|
|
if not ray.is_initialized():
|
|
# this is for local ray cluster
|
|
default_runtime_env = {
|
|
"env_vars": {"TOKENIZERS_PARALLELISM": "true", "NCCL_DEBUG": "WARN", "VLLM_LOGGING_LEVEL": "WARN"}
|
|
}
|
|
ray_init_kwargs = config.ray_kwargs.get("ray_init", {})
|
|
runtime_env_kwargs = ray_init_kwargs.get("runtime_env", {})
|
|
runtime_env = OmegaConf.merge(default_runtime_env, runtime_env_kwargs)
|
|
ray_init_kwargs = OmegaConf.create({**ray_init_kwargs, "runtime_env": runtime_env})
|
|
print(f"ray init kwargs: {ray_init_kwargs}")
|
|
ray.init(**OmegaConf.to_container(ray_init_kwargs))
|
|
|
|
try:
|
|
if (
|
|
is_cuda_available
|
|
and config.global_profiler.tool == "nsys"
|
|
and OmegaConf.select(config.global_profiler, "steps") is not None
|
|
and len(OmegaConf.select(config.global_profiler, "steps")) > 0
|
|
):
|
|
nsight_options = OmegaConf.to_container(
|
|
config.global_profiler.global_tool_config.nsys.controller_nsight_options
|
|
)
|
|
runner = TaskRunner.options(runtime_env={"nsight": nsight_options}).remote()
|
|
else:
|
|
runner = TaskRunner.remote()
|
|
ray.get(runner.run.remote(config))
|
|
finally:
|
|
if ray.is_initialized():
|
|
ray.shutdown()
|
|
|
|
|
|
@ray.remote(num_cpus=1) # please make sure main_task is not scheduled on head
|
|
class TaskRunner:
|
|
def run(self, config):
|
|
# print initial config
|
|
from pprint import pprint
|
|
|
|
from omegaconf import OmegaConf
|
|
|
|
from verl.utils.fs import copy_to_local
|
|
|
|
print(f"TaskRunner hostname: {socket.gethostname()}, PID: {os.getpid()}")
|
|
|
|
pprint(OmegaConf.to_container(config, resolve=True)) # resolve=True will eval symbol values
|
|
OmegaConf.resolve(config)
|
|
|
|
# download the checkpoint from hdfs
|
|
local_path = copy_to_local(config.actor_rollout_ref.model.path)
|
|
|
|
# instantiate tokenizer
|
|
from verl.utils import hf_processor, hf_tokenizer
|
|
|
|
tokenizer = hf_tokenizer(local_path)
|
|
processor = hf_processor(local_path, use_fast=True) # used for multimodal LLM, could be none
|
|
|
|
from verl.single_controller.ray import RayWorkerGroup
|
|
|
|
# define worker classes
|
|
if config.actor_rollout_ref.actor.strategy in {"fsdp", "fsdp2"}:
|
|
assert config.critic.strategy in {"fsdp", "fsdp2"}
|
|
|
|
from verl.workers.fsdp_workers import ActorRolloutRefWorker, CriticWorker
|
|
|
|
ray_worker_group_cls = RayWorkerGroup
|
|
|
|
elif config.actor_rollout_ref.actor.strategy == "megatron":
|
|
assert config.actor_rollout_ref.actor.strategy == config.critic.strategy
|
|
from verl.workers.megatron_workers import ActorRolloutRefWorker, CriticWorker
|
|
|
|
ray_worker_group_cls = RayWorkerGroup
|
|
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
from verl.trainer.ppo.ray_trainer import ResourcePoolManager, Role
|
|
|
|
role_worker_mapping = {
|
|
Role.ActorRollout: ray.remote(ActorRolloutRefWorker),
|
|
Role.Critic: ray.remote(CriticWorker),
|
|
}
|
|
|
|
global_pool_id = "global_pool"
|
|
resource_pool_spec = {
|
|
global_pool_id: [config.trainer.n_gpus_per_node] * config.trainer.nnodes,
|
|
}
|
|
mapping = {
|
|
Role.ActorRollout: global_pool_id,
|
|
Role.Critic: global_pool_id,
|
|
}
|
|
|
|
# we should adopt a multi-source reward function here
|
|
# - for rule-based rm, we directly call a reward score
|
|
# - for model-based rm, we call a model
|
|
# - for code related prompt, we send to a sandbox if there are test cases
|
|
# - finally, we combine all the rewards together
|
|
# - The reward type depends on the tag of the data
|
|
if config.reward_model.enable:
|
|
if config.reward_model.strategy in {"fsdp", "fsdp2"}:
|
|
from verl.workers.fsdp_workers import RewardModelWorker
|
|
elif config.reward_model.strategy == "megatron":
|
|
from verl.workers.megatron_workers import RewardModelWorker
|
|
else:
|
|
raise NotImplementedError
|
|
role_worker_mapping[Role.RewardModel] = ray.remote(RewardModelWorker)
|
|
mapping[Role.RewardModel] = global_pool_id
|
|
|
|
# reference model
|
|
if config.algorithm.use_kl_in_reward or config.actor_rollout_ref.actor.use_kl_loss:
|
|
role_worker_mapping[Role.RefPolicy] = ray.remote(ActorRolloutRefWorker)
|
|
mapping[Role.RefPolicy] = global_pool_id
|
|
|
|
reward_fn = load_reward_manager(
|
|
config,
|
|
tokenizer,
|
|
0,
|
|
max_resp_len=config.data.max_response_length,
|
|
overlong_buffer_cfg=config.reward_model.overlong_buffer,
|
|
)
|
|
|
|
# Note that we always use function-based RM for validation
|
|
val_reward_fn = load_reward_manager(
|
|
config,
|
|
tokenizer,
|
|
1,
|
|
max_resp_len=config.data.max_response_length,
|
|
overlong_buffer_cfg=config.reward_model.overlong_buffer,
|
|
)
|
|
resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping)
|
|
|
|
trainer = RayDAPOTrainer(
|
|
config=config,
|
|
tokenizer=tokenizer,
|
|
processor=processor,
|
|
role_worker_mapping=role_worker_mapping,
|
|
resource_pool_manager=resource_pool_manager,
|
|
ray_worker_group_cls=ray_worker_group_cls,
|
|
reward_fn=reward_fn,
|
|
val_reward_fn=val_reward_fn,
|
|
)
|
|
trainer.init_workers()
|
|
trainer.fit()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|