mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 13:43:50 +08:00
### What does this PR do? fix typo `gather_outpus_and_unpad` -> `gather_outputs_and_unpad` ### Checklist Before Starting - [x] Search for similar PRs. Paste at least one query link here: ... - [x] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc. ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### Design & Code Changes > Demonstrate the high-level design if this PR is complex, and list the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [ ] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [ ] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). --------- Signed-off-by: ShareLer <ShareLe@163.com>
600 lines
27 KiB
Python
600 lines
27 KiB
Python
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
|
# Copyright 2023-2024 SGLang Team
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import logging
|
|
import os
|
|
import warnings
|
|
|
|
import psutil
|
|
import torch
|
|
import torch.distributed
|
|
from codetiming import Timer
|
|
from omegaconf import open_dict
|
|
from torch.distributed.device_mesh import init_device_mesh
|
|
|
|
import verl.utils.torch_functional as verl_F
|
|
from verl import DataProto
|
|
from verl.single_controller.base import Worker
|
|
from verl.single_controller.base.decorator import Dispatch, register
|
|
from verl.utils import hf_tokenizer
|
|
from verl.utils.checkpoint.fsdp_checkpoint_manager import FSDPCheckpointManager
|
|
from verl.utils.device import get_device_id, get_device_name, get_nccl_backend, get_torch_device
|
|
from verl.utils.flops_counter import FlopsCounter
|
|
from verl.utils.fs import copy_to_local
|
|
from verl.utils.fsdp_utils import (
|
|
get_fsdp_wrap_policy,
|
|
get_init_weight_context_manager,
|
|
init_fn,
|
|
load_fsdp_model_to_gpu,
|
|
load_fsdp_optimizer,
|
|
offload_fsdp_model_to_cpu,
|
|
offload_fsdp_optimizer,
|
|
)
|
|
from verl.utils.import_utils import import_external_libs
|
|
from verl.utils.model import compute_position_id_with_mask
|
|
from verl.utils.profiler import log_gpu_memory_usage
|
|
from verl.workers.fsdp_workers import ActorRolloutRefWorker
|
|
from verl.workers.sharding_manager.fsdp_ulysses import FSDPUlyssesShardingManager
|
|
|
|
logger = logging.getLogger(__file__)
|
|
logger.setLevel(os.getenv("VERL_PPO_LOGGING_LEVEL", "WARN"))
|
|
|
|
|
|
def create_device_mesh(world_size, fsdp_size):
|
|
if fsdp_size < 0 or fsdp_size >= world_size:
|
|
device_mesh = init_device_mesh(get_device_name(), mesh_shape=(world_size,), mesh_dim_names=["fsdp"])
|
|
else:
|
|
device_mesh = init_device_mesh(
|
|
get_device_name(), mesh_shape=(world_size // fsdp_size, fsdp_size), mesh_dim_names=["ddp", "fsdp"]
|
|
)
|
|
return device_mesh
|
|
|
|
|
|
def get_sharding_strategy(device_mesh):
|
|
from torch.distributed.fsdp import ShardingStrategy
|
|
|
|
if device_mesh.ndim == 1:
|
|
sharding_strategy = ShardingStrategy.FULL_SHARD
|
|
elif device_mesh.ndim == 2:
|
|
sharding_strategy = ShardingStrategy.HYBRID_SHARD
|
|
else:
|
|
raise NotImplementedError(f"Get device mesh ndim={device_mesh.ndim}, but only support 1 or 2")
|
|
return sharding_strategy
|
|
|
|
|
|
class SPINRolloutRefWorker(ActorRolloutRefWorker):
|
|
@register(dispatch_mode=Dispatch.ONE_TO_ALL)
|
|
def init_model(self):
|
|
from recipe.spin.dp_actor import SPINDataParallelPPOActor as DataParallelPPOActor
|
|
|
|
# This is used to import external_lib into the huggingface systems
|
|
import_external_libs(self.config.model.get("external_lib", None))
|
|
|
|
from omegaconf import OmegaConf
|
|
|
|
override_model_config = OmegaConf.to_container(self.config.model.get("override_config", OmegaConf.create()))
|
|
|
|
use_remove_padding = self.config.model.get("use_remove_padding", False)
|
|
use_fused_kernels = self.config.model.get("use_fused_kernels", False)
|
|
|
|
if self._is_actor or self._is_rollout or self._is_ref:
|
|
# we need the model for actor and rollout
|
|
if self._is_actor or self._is_ref:
|
|
optim_config = self.config.actor.optim
|
|
fsdp_config = self.config.actor.fsdp_config
|
|
else:
|
|
optim_config = None
|
|
fsdp_config = OmegaConf.create()
|
|
self.actor_module_fsdp, self.actor_optimizer, self.actor_lr_scheduler, self.actor_model_config = (
|
|
self._build_model_optimizer(
|
|
model_path=self.config.model.path,
|
|
fsdp_config=fsdp_config,
|
|
optim_config=optim_config,
|
|
override_model_config=override_model_config,
|
|
use_remove_padding=use_remove_padding,
|
|
use_fused_kernels=use_fused_kernels,
|
|
enable_gradient_checkpointing=self.config.model.get("enable_gradient_checkpointing", False),
|
|
trust_remote_code=self.config.model.get("trust_remote_code", False),
|
|
use_liger=self.config.model.get("use_liger", False),
|
|
role="actor",
|
|
)
|
|
)
|
|
|
|
# get the original unwrapped module
|
|
self.actor_module = self.actor_module_fsdp._fsdp_wrapped_module
|
|
|
|
if self._is_offload_optimizer:
|
|
offload_fsdp_optimizer(optimizer=self.actor_optimizer)
|
|
log_gpu_memory_usage("After offload actor optimizer during init", logger=logger)
|
|
# load from checkpoint
|
|
if self._is_actor or self._is_ref:
|
|
OmegaConf.set_struct(self.config.actor, True)
|
|
with open_dict(self.config.actor):
|
|
self.config.actor.use_remove_padding = use_remove_padding
|
|
self.config.actor.use_fused_kernels = use_fused_kernels
|
|
self.actor = DataParallelPPOActor(
|
|
config=self.config.actor, actor_module=self.actor_module_fsdp, actor_optimizer=self.actor_optimizer
|
|
)
|
|
|
|
if self._is_rollout:
|
|
self.rollout, self.rollout_sharding_manager = self._build_rollout(
|
|
trust_remote_code=self.config.model.get("trust_remote_code", False)
|
|
)
|
|
|
|
if self._is_ref:
|
|
self.ref_module_fsdp = self._build_model_optimizer(
|
|
model_path=self.config.model.path,
|
|
fsdp_config=self.config.ref.fsdp_config,
|
|
optim_config=None,
|
|
override_model_config=override_model_config,
|
|
use_remove_padding=use_remove_padding,
|
|
use_fused_kernels=use_fused_kernels,
|
|
trust_remote_code=self.config.model.get("trust_remote_code", False),
|
|
use_liger=self.config.model.get("use_liger", False),
|
|
role="ref",
|
|
)[0]
|
|
OmegaConf.set_struct(self.config.ref, True)
|
|
with open_dict(self.config.ref):
|
|
self.config.ref.use_remove_padding = use_remove_padding
|
|
self.config.ref.use_fused_kernels = use_fused_kernels
|
|
self.ref_policy = DataParallelPPOActor(config=self.config.ref, actor_module=self.ref_module_fsdp)
|
|
self.checkpoint_manager = FSDPCheckpointManager(
|
|
model=self.actor_module_fsdp,
|
|
optimizer=self.actor.actor_optimizer,
|
|
lr_scheduler=self.actor_lr_scheduler,
|
|
processing_class=self.processor if self.processor is not None else self.tokenizer,
|
|
checkpoint_config=self.config.actor.checkpoint,
|
|
)
|
|
|
|
if self._is_actor:
|
|
self.flops_counter = FlopsCounter(self.actor_model_config)
|
|
self.checkpoint_manager = FSDPCheckpointManager(
|
|
model=self.actor_module_fsdp,
|
|
optimizer=self.actor.actor_optimizer,
|
|
lr_scheduler=self.actor_lr_scheduler,
|
|
processing_class=self.processor if self.processor is not None else self.tokenizer,
|
|
checkpoint_config=self.config.actor.checkpoint,
|
|
)
|
|
|
|
@register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO)
|
|
def compute_ref_log_prob(self, data: DataProto):
|
|
assert self._is_ref
|
|
|
|
# Support all hardwares
|
|
data = data.to(get_device_id())
|
|
|
|
micro_batch_size = self.config.ref.log_prob_micro_batch_size_per_gpu
|
|
data.meta_info["micro_batch_size"] = micro_batch_size
|
|
data.meta_info["temperature"] = self.config.rollout.temperature
|
|
data.meta_info["max_token_len"] = self.config.ref.log_prob_max_token_len_per_gpu
|
|
data.meta_info["use_dynamic_bsz"] = self.config.ref.log_prob_use_dynamic_bsz
|
|
with self.ulysses_sharding_manager:
|
|
data = self.ulysses_sharding_manager.preprocess_data(data)
|
|
output = self.ref_policy.compute_log_prob(data=data)
|
|
output = DataProto.from_dict(tensors={"ref_log_prob": output})
|
|
output = self.ulysses_sharding_manager.postprocess_data(output)
|
|
|
|
output = output.to("cpu")
|
|
|
|
# https://pytorch.org/docs/stable/notes/fsdp.html#fsdp-notes
|
|
# unshard the root FSDP module
|
|
if self.world_size > 1:
|
|
self.ref_policy.actor_module._handle.reshard(True)
|
|
|
|
return output
|
|
|
|
@register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO)
|
|
def compute_log_prob(self, data: DataProto):
|
|
assert self._is_actor
|
|
if self._is_offload_param:
|
|
load_fsdp_model_to_gpu(self.actor_module_fsdp)
|
|
|
|
# Support all hardwares
|
|
data = data.to(get_device_id())
|
|
# we should always recompute old_log_probs when it is HybridEngine
|
|
data.meta_info["micro_batch_size"] = self.config.rollout.log_prob_micro_batch_size_per_gpu
|
|
data.meta_info["max_token_len"] = self.config.rollout.log_prob_max_token_len_per_gpu
|
|
data.meta_info["use_dynamic_bsz"] = self.config.rollout.log_prob_use_dynamic_bsz
|
|
data.meta_info["temperature"] = self.config.rollout.temperature
|
|
# perform recompute log_prob
|
|
with self.ulysses_sharding_manager:
|
|
data = self.ulysses_sharding_manager.preprocess_data(data)
|
|
output = self.actor.compute_log_prob(data=data)
|
|
output = DataProto.from_dict(
|
|
tensors={"old_log_probs": output}, meta_info={"temperature": self.config.rollout.temperature}
|
|
)
|
|
output = self.ulysses_sharding_manager.postprocess_data(output)
|
|
|
|
output = output.to("cpu")
|
|
|
|
# https://pytorch.org/docs/stable/notes/fsdp.html#fsdp-notes
|
|
# unshard the root FSDP module
|
|
if self.world_size > 1:
|
|
self.actor.actor_module._handle.reshard(True)
|
|
|
|
if self._is_offload_param:
|
|
offload_fsdp_model_to_cpu(self.actor_module_fsdp)
|
|
|
|
log_gpu_memory_usage("After compute_log_prob", logger=logger)
|
|
return output
|
|
|
|
@register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO)
|
|
def update_actor_dpo(self, data: DataProto):
|
|
"""
|
|
Wrapper for actor update step. Handles FSDP state management.
|
|
Calls self.actor.update_policy which now contains DPO logic based
|
|
on pre-calculated log probabilities.
|
|
"""
|
|
# Support all hardwares
|
|
data = data.to(get_device_id())
|
|
|
|
assert self._is_actor # Make sure this worker has the actor role
|
|
if self.actor is None:
|
|
raise RuntimeError("Actor instance (self.actor) not initialized in worker.")
|
|
|
|
# --- FSDP State Management ---
|
|
if self._is_offload_param:
|
|
load_fsdp_model_to_gpu(self.actor_module_fsdp)
|
|
if self._is_offload_optimizer:
|
|
load_fsdp_optimizer(optimizer=self.actor_optimizer, device_id=get_device_id())
|
|
|
|
log_gpu_memory_usage("Before update policy (DPO via PPO path)", logger=logger)
|
|
|
|
# --- Ulysses Sharding (if used) ---
|
|
with self.ulysses_sharding_manager:
|
|
data = self.ulysses_sharding_manager.preprocess_data(data=data)
|
|
|
|
# --- Call the core update method (now containing DPO logic) ---
|
|
with Timer(name="update_policy_dpo_via_ppo", logger=None) as timer: # Use a distinct timer name
|
|
# Calls the modified update_policy method
|
|
metrics = self.actor.update_policy_dpo_with_ref(data=data) # <-- THIS CALLS THE MODIFIED FUNCTION
|
|
delta_time = timer.last
|
|
|
|
# --- Add Performance Metrics ---
|
|
# MFU calculation might be less accurate/meaningful here for DPO
|
|
metrics["perf/approx_tokens_processed"] = torch.sum(
|
|
data.batch.get("attention_mask", torch.tensor(0))
|
|
).item() # Approx tokens
|
|
metrics["perf/max_memory_allocated_gb"] = get_torch_device().max_memory_allocated() / (1024**3)
|
|
metrics["perf/max_memory_reserved_gb"] = get_torch_device().max_memory_reserved() / (1024**3)
|
|
metrics["perf/cpu_memory_used_gb"] = psutil.virtual_memory().used / (1024**3)
|
|
global_num_tokens = data.meta_info["global_token_num"]
|
|
estimated_flops, promised_flops = self.flops_counter.estimate_flops(global_num_tokens, delta_time)
|
|
metrics["perf/mfu/actor"] = estimated_flops * self.config.ppo_epochs / promised_flops / self.world_size
|
|
|
|
# --- LR Scheduler Step ---
|
|
lr = self.actor_lr_scheduler.get_last_lr()[0]
|
|
metrics["actor/lr"] = lr
|
|
self.actor_lr_scheduler.step()
|
|
|
|
log_gpu_memory_usage("After update policy (DPO via PPO path)", logger=logger)
|
|
|
|
# --- Prepare Output ---
|
|
output = DataProto(meta_info={"metrics": metrics})
|
|
output = self.ulysses_sharding_manager.postprocess_data(data=output)
|
|
output = output.to("cpu")
|
|
|
|
# --- FSDP State Management (Offload) ---
|
|
if self._is_offload_param:
|
|
offload_fsdp_model_to_cpu(self.actor_module_fsdp)
|
|
if self._is_offload_optimizer:
|
|
offload_fsdp_optimizer(optimizer=self.actor_optimizer)
|
|
|
|
return output
|
|
|
|
|
|
# TODO(sgm): we may need to extract it to dp_reward_model.py
|
|
class RewardModelWorker(Worker):
|
|
"""
|
|
Note that we only implement the reward model that is subclass of AutoModelForTokenClassification.
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
super().__init__()
|
|
import torch.distributed
|
|
|
|
if not torch.distributed.is_initialized():
|
|
torch.distributed.init_process_group(backend=get_nccl_backend())
|
|
self.config = config
|
|
|
|
# build device mesh for Ulysses Sequence Parallel
|
|
world_size = torch.distributed.get_world_size()
|
|
from torch.distributed.device_mesh import init_device_mesh
|
|
|
|
fsdp_size = self.config.model.fsdp_config.fsdp_size
|
|
self.device_mesh = create_device_mesh(world_size=world_size, fsdp_size=fsdp_size)
|
|
|
|
self.ulysses_device_mesh = None
|
|
self.ulysses_sequence_parallel_size = self.config.get("ulysses_sequence_parallel_size", 1)
|
|
dp = world_size // self.ulysses_sequence_parallel_size
|
|
if self.ulysses_sequence_parallel_size > 1:
|
|
self.ulysses_device_mesh = init_device_mesh(
|
|
get_device_name(), mesh_shape=(dp, self.ulysses_sequence_parallel_size), mesh_dim_names=["dp", "sp"]
|
|
)
|
|
|
|
self.ulysses_sharding_manager = FSDPUlyssesShardingManager(self.ulysses_device_mesh)
|
|
|
|
self.use_remove_padding = self.config.model.get("use_remove_padding", False)
|
|
|
|
# normalize config
|
|
if self.config.micro_batch_size is not None:
|
|
self.config.micro_batch_size //= torch.distributed.get_world_size()
|
|
self.config.micro_batch_size_per_gpu = self.config.micro_batch_size
|
|
|
|
def _build_model(self, config):
|
|
# the following line is necessary
|
|
from torch.distributed.fsdp import CPUOffload
|
|
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
|
from transformers import AutoConfig, AutoModelForTokenClassification
|
|
|
|
# download the checkpoint from hdfs
|
|
local_path = copy_to_local(config.model.path)
|
|
|
|
if self.config.model.input_tokenizer is None:
|
|
self._do_switch_chat_template = False
|
|
else:
|
|
self._do_switch_chat_template = True
|
|
input_tokenizer_local_path = copy_to_local(config.model.input_tokenizer)
|
|
self.input_tokenizer = hf_tokenizer(
|
|
input_tokenizer_local_path, trust_remote_code=config.model.get("trust_remote_code", False)
|
|
)
|
|
self.tokenizer = hf_tokenizer(local_path, trust_remote_code=config.model.get("trust_remote_code", False))
|
|
|
|
trust_remote_code = config.model.get("trust_remote_code", False)
|
|
model_config = AutoConfig.from_pretrained(local_path, trust_remote_code=trust_remote_code)
|
|
model_config.num_labels = 1
|
|
|
|
# note that we have to create model in fp32. Otherwise, the optimizer is in bf16, which is incorrect
|
|
init_context = get_init_weight_context_manager(
|
|
use_meta_tensor=not model_config.tie_word_embeddings, mesh=self.device_mesh
|
|
)
|
|
|
|
with init_context(), warnings.catch_warnings():
|
|
warnings.simplefilter("ignore")
|
|
model_config.classifier_dropout = 0.0
|
|
reward_module = AutoModelForTokenClassification.from_pretrained(
|
|
pretrained_model_name_or_path=local_path,
|
|
config=model_config,
|
|
torch_dtype=torch.bfloat16,
|
|
attn_implementation="flash_attention_2",
|
|
trust_remote_code=trust_remote_code,
|
|
)
|
|
|
|
if config.model.get("use_remove_padding", False) or self.ulysses_sequence_parallel_size > 1:
|
|
from verl.models.transformers.monkey_patch import apply_monkey_patch
|
|
|
|
apply_monkey_patch(model=reward_module, ulysses_sp_size=self.ulysses_sequence_parallel_size)
|
|
|
|
reward_module.to(torch.bfloat16)
|
|
|
|
auto_wrap_policy = get_fsdp_wrap_policy(module=reward_module, config=self.config.model.fsdp_config)
|
|
|
|
fsdp_mesh = self.device_mesh
|
|
sharding_strategy = get_sharding_strategy(fsdp_mesh)
|
|
|
|
reward_module = FSDP(
|
|
reward_module,
|
|
param_init_fn=init_fn,
|
|
use_orig_params=False,
|
|
auto_wrap_policy=auto_wrap_policy,
|
|
device_id=get_device_id(),
|
|
sharding_strategy=sharding_strategy, # zero3
|
|
sync_module_states=True,
|
|
cpu_offload=CPUOffload(offload_params=True),
|
|
forward_prefetch=False,
|
|
device_mesh=self.device_mesh,
|
|
)
|
|
|
|
return reward_module
|
|
|
|
@register(dispatch_mode=Dispatch.ONE_TO_ALL)
|
|
def init_model(self):
|
|
# This is used to import external_lib into the huggingface systems
|
|
import_external_libs(self.config.model.get("external_lib", None))
|
|
self.reward_module = self._build_model(config=self.config)
|
|
|
|
def _forward_micro_batch(self, micro_batch):
|
|
from flash_attn.bert_padding import index_first_axis, pad_input, rearrange, unpad_input
|
|
|
|
from verl.utils.ulysses import gather_outputs_and_unpad, ulysses_pad_and_slice_inputs
|
|
|
|
with torch.no_grad(), torch.autocast(device_type=get_device_name(), dtype=torch.bfloat16):
|
|
input_ids = micro_batch["input_ids"]
|
|
batch_size, seqlen = input_ids.shape
|
|
attention_mask = micro_batch["attention_mask"]
|
|
position_ids = micro_batch["position_ids"]
|
|
|
|
if self.use_remove_padding:
|
|
input_ids_rmpad, indices, *_ = unpad_input(
|
|
input_ids.unsqueeze(-1), attention_mask
|
|
) # input_ids_rmpad (total_nnz, ...)
|
|
input_ids_rmpad = input_ids_rmpad.transpose(0, 1) # (1, total_nnz)
|
|
|
|
# unpad the position_ids to align the rotary
|
|
position_ids_rmpad = index_first_axis(
|
|
rearrange(position_ids.unsqueeze(-1), "b s ... -> (b s) ..."), indices
|
|
).transpose(0, 1)
|
|
|
|
# pad and slice the inputs if sp > 1
|
|
if self.ulysses_sequence_parallel_size > 1:
|
|
input_ids_rmpad, position_ids_rmpad, pad_size = ulysses_pad_and_slice_inputs(
|
|
input_ids_rmpad, position_ids_rmpad, sp_size=self.ulysses_sequence_parallel_size
|
|
)
|
|
|
|
# only pass input_ids and position_ids to enable flash_attn_varlen
|
|
output = self.reward_module(
|
|
input_ids=input_ids_rmpad, attention_mask=None, position_ids=position_ids_rmpad, use_cache=False
|
|
) # prevent model thinks we are generating
|
|
reward_rmpad = output.logits
|
|
reward_rmpad = reward_rmpad.squeeze(0) # (total_nnz)
|
|
|
|
# gather output if sp > 1
|
|
if self.ulysses_sequence_parallel_size > 1:
|
|
reward_rmpad = gather_outputs_and_unpad(
|
|
reward_rmpad, gather_dim=0, unpad_dim=0, padding_size=pad_size
|
|
)
|
|
|
|
# pad it back
|
|
rm_score = pad_input(reward_rmpad, indices=indices, batch=batch_size, seqlen=seqlen).squeeze(-1)
|
|
else:
|
|
output = self.reward_module(
|
|
input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, use_cache=False
|
|
)
|
|
rm_score = output.logits # (batch_size, seq_len, 1)
|
|
rm_score = rm_score.squeeze(-1)
|
|
|
|
# extract the result of the last valid token
|
|
eos_mask_idx = torch.argmax(position_ids * attention_mask, dim=-1) # (bsz,)
|
|
rm_score = rm_score[torch.arange(batch_size), eos_mask_idx]
|
|
return rm_score
|
|
|
|
def _expand_to_token_level(self, data: DataProto, scores: torch.Tensor):
|
|
batch_size = data.batch.batch_size[0]
|
|
# expand as token_level_reward
|
|
attention_mask = data.batch["attention_mask"]
|
|
position_ids = data.batch["position_ids"]
|
|
response_length = data.batch["responses"].shape[-1]
|
|
eos_mask_idx = torch.argmax(position_ids * attention_mask, dim=-1) # (bsz,)
|
|
token_level_scores = torch.zeros_like(attention_mask, dtype=scores.dtype) # (bsz, seqlen)
|
|
token_level_scores[torch.arange(batch_size), eos_mask_idx] = scores
|
|
|
|
# select the response part
|
|
token_level_scores = token_level_scores[:, -response_length:]
|
|
|
|
return token_level_scores
|
|
|
|
def _switch_chat_template(self, data: DataProto):
|
|
src_max_length = data.batch["attention_mask"].shape[-1]
|
|
|
|
src_tokenizer = self.input_tokenizer
|
|
target_tokenizer = self.tokenizer
|
|
|
|
rm_input_ids = []
|
|
rm_attention_mask = []
|
|
|
|
for i in range(data.batch.batch_size[0]):
|
|
# extract raw prompt
|
|
if isinstance(data.non_tensor_batch["raw_prompt"][i], list):
|
|
chat: list = data.non_tensor_batch["raw_prompt"][i]
|
|
else:
|
|
chat: list = data.non_tensor_batch["raw_prompt"][i].tolist()
|
|
|
|
# extract response
|
|
response_ids = data.batch["responses"][i]
|
|
response_length = response_ids.shape[-1]
|
|
valid_response_length = data.batch["attention_mask"][i][-response_length:].sum()
|
|
valid_response_ids = response_ids[:valid_response_length]
|
|
|
|
# decode
|
|
response = src_tokenizer.decode(valid_response_ids)
|
|
# remove bos and eos
|
|
response = response.replace(src_tokenizer.eos_token, "")
|
|
|
|
chat.append({"role": "assistant", "content": response})
|
|
|
|
prompt_with_chat_template = target_tokenizer.apply_chat_template(
|
|
chat, add_generation_prompt=False, tokenize=False
|
|
)
|
|
if self.rank == 0 and i == 0:
|
|
# for debugging purpose
|
|
print(f"Switch template. chat: {prompt_with_chat_template}")
|
|
|
|
# the maximum length is actually determined by the reward model itself
|
|
max_length = self.config.get("max_length", src_max_length)
|
|
if max_length is None:
|
|
max_length = src_max_length
|
|
|
|
model_inputs = target_tokenizer(prompt_with_chat_template, return_tensors="pt", add_special_tokens=False)
|
|
input_ids, attention_mask = verl_F.postprocess_data(
|
|
input_ids=model_inputs["input_ids"],
|
|
attention_mask=model_inputs["attention_mask"],
|
|
max_length=max_length,
|
|
pad_token_id=target_tokenizer.pad_token_id,
|
|
left_pad=False, # right padding
|
|
truncation=self.config.get("truncation", "right"),
|
|
) # truncate from the right
|
|
|
|
rm_input_ids.append(input_ids)
|
|
rm_attention_mask.append(attention_mask)
|
|
|
|
rm_input_ids = torch.cat(rm_input_ids, dim=0)
|
|
rm_attention_mask = torch.cat(rm_attention_mask, dim=0)
|
|
|
|
rm_position_ids = compute_position_id_with_mask(rm_attention_mask)
|
|
|
|
rm_inputs = {"input_ids": rm_input_ids, "attention_mask": rm_attention_mask, "position_ids": rm_position_ids}
|
|
|
|
return DataProto.from_dict(rm_inputs)
|
|
|
|
@register(dispatch_mode=Dispatch.DP_COMPUTE_PROTO)
|
|
def compute_rm_score(self, data: DataProto):
|
|
import itertools
|
|
|
|
from verl.utils.seqlen_balancing import get_reverse_idx, rearrange_micro_batches
|
|
|
|
# Support all hardwares
|
|
data = data.to(get_device_id())
|
|
if self._do_switch_chat_template:
|
|
rm_data = self._switch_chat_template(data)
|
|
else:
|
|
rm_input_ids = data.batch["input_ids"]
|
|
rm_attention_mask = data.batch["attention_mask"]
|
|
rm_position_ids = data.batch["position_ids"]
|
|
rm_inputs = {
|
|
"input_ids": rm_input_ids,
|
|
"attention_mask": rm_attention_mask,
|
|
"position_ids": rm_position_ids,
|
|
}
|
|
rm_data = DataProto.from_dict(rm_inputs)
|
|
|
|
# Support all hardwares
|
|
rm_data.batch = rm_data.batch.to(get_device_id())
|
|
|
|
# perform forward computation
|
|
with self.ulysses_sharding_manager:
|
|
rm_data = self.ulysses_sharding_manager.preprocess_data(data=rm_data)
|
|
data = self.ulysses_sharding_manager.preprocess_data(data=data)
|
|
|
|
use_dynamic_bsz = self.config.use_dynamic_bsz
|
|
if use_dynamic_bsz:
|
|
max_token_len = self.config.forward_max_token_len_per_gpu * self.ulysses_sequence_parallel_size
|
|
micro_batches, indices = rearrange_micro_batches(batch=rm_data.batch, max_token_len=max_token_len)
|
|
else:
|
|
micro_batches = rm_data.batch.split(self.config.micro_batch_size_per_gpu)
|
|
output = []
|
|
for micro_batch in micro_batches:
|
|
rm_score = self._forward_micro_batch(micro_batch)
|
|
output.append(rm_score)
|
|
scores = torch.cat(output, dim=0) # (batch_size)
|
|
|
|
if use_dynamic_bsz:
|
|
indices = list(itertools.chain.from_iterable(indices))
|
|
assert len(indices) == scores.size(0), f"{len(indices)} vs. {scores.size()}"
|
|
revert_indices = torch.tensor(get_reverse_idx(indices), dtype=torch.long)
|
|
scores = scores[revert_indices]
|
|
|
|
token_level_scores = self._expand_to_token_level(data, scores)
|
|
# Note that this is only the scores, may not be the final rewards used to train RL
|
|
output = DataProto.from_dict(tensors={"rm_scores": token_level_scores})
|
|
output = self.ulysses_sharding_manager.postprocess_data(data=output)
|
|
|
|
# https://pytorch.org/docs/stable/notes/fsdp.html#fsdp-notes
|
|
# unshard the root FSDP module
|
|
self.reward_module._handle.reshard(True)
|
|
|
|
output = output.to("cpu")
|
|
return output
|