Files
verl/recipe/open_math_reasoning/run_sft_qwen3_8b.sh
Chi Zhang 22d082f9a4 [recipe] feat: add open math reasoning (#3767)
### What does this PR do?

- Add open math reasoning recipe using sft trainer with model engine
- Support setting none to val dataset in sft trainer
- Fix main_eval
- Using aiohttp for main_generation_server to avoid hang in AsyncOpenAI

### Checklist Before Starting

- [ ] Search for similar PRs. Paste at least one query link here: ...
- [ ] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [ ] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [ ] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)

---------

Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-10-15 12:11:41 +08:00

94 lines
2.8 KiB
Bash

#!/usr/bin/env bash
set -xeuo pipefail
ENTRYPOINT=${ENTRYPOINT:-"-m verl.trainer.sft_trainer"}
TRAIN_FILES=${TRAIN_FILES:-/path/to/cot_dataset.parquet}
backend=${BACKEND:-fsdp}
project_name=verl_sft_test
RESUME_MODE=auto
MODEL_ID=${MODEL_ID:-Qwen/Qwen3-8B-Base}
SP_SIZE=${SP_SIZE:-8}
FSDP_SIZE=${FSDP_SIZE:-16}
FSDP_STRATEGY=${FSDP_STRATEGY:-"fsdp2"}
TP_SIZE=${TP_SIZE:-1}
PP_SIZE=${PP_SIZE:-1}
VPP_SIZE=${VPP_SIZE:-null}
CP_SIZE=${CP_SIZE:-1}
PAD_MODE=${PAD_MODE:-no_padding}
USE_REMOVE_PADDING=${USE_REMOVE_PADDING:-True}
FSDP_ENGINE_CONFIG="\
engine=${backend} \
optim=${backend} \
optim.lr=2e-5 \
optim.lr_warmup_steps_ratio=0.01 \
optim.weight_decay=0.1 \
optim.betas="[0.9,0.95]" \
optim.clip_grad=1.0 \
optim.min_lr_ratio=0.1 \
optim.warmup_style=cosine \
engine.ulysses_sequence_parallel_size=${SP_SIZE} \
engine.strategy=${FSDP_STRATEGY} \
engine.fsdp_size=${FSDP_SIZE}"
MEGATRON_ENGINE_CONFIG="\
engine=${backend} \
optim=${backend} \
optim.lr=1e-5 \
optim.lr_warmup_steps_ratio=0.2 \
optim.weight_decay=0.1 \
optim.betas="[0.9,0.95]" \
optim.clip_grad=1.0 \
optim.lr_warmup_init=0 \
optim.lr_decay_style=cosine \
optim.min_lr=1e-6 \
engine.tensor_model_parallel_size=${TP_SIZE} \
engine.pipeline_model_parallel_size=${PP_SIZE} \
engine.virtual_pipeline_model_parallel_size=${VPP_SIZE} \
engine.context_parallel_size=${CP_SIZE}"
if [ "$backend" = "fsdp" ]; then
ENGINE_CONFIG="$FSDP_ENGINE_CONFIG"
echo "Using fsdp engine"
exp_name=nvidia-openmathreasoning-qwen3-8b-${backend}-${FSDP_STRATEGY}-sp${SP_SIZE}-fsdp-1008a1
else
ENGINE_CONFIG="$MEGATRON_ENGINE_CONFIG"
echo "Using megatron engine"
exp_name=nvidia-openmathreasoning-${backend}-tp${TP_SIZE}-pp${PP_SIZE}-vpp${VPP_SIZE}-cp${CP_SIZE}-pad-${PAD_MODE}-use_remove_padding-${USE_REMOVE_PADDING}
fi
CKPT_HOME=${CKPT_HOME:-$HOME/open_verl/sft/${project_name}/${exp_name}}
mkdir -p "${CKPT_HOME}"
torchrun --standalone --nnodes=1 --nproc-per-node=${NUM_TRAINERS:-8} \
${ENTRYPOINT} \
data.train_files="${TRAIN_FILES}" \
data.train_batch_size=96 \
data.max_length=32768 \
data.pad_mode=${PAD_MODE} \
data.truncation=error \
data.use_dynamic_bsz=True \
data.max_token_len_per_gpu=65536 \
data.messages_key=messages \
model.path=$MODEL_ID \
model.use_remove_padding=${USE_REMOVE_PADDING} \
${ENGINE_CONFIG} \
trainer.test_freq=-1 \
trainer.save_freq=4000 \
trainer.logger=['console','wandb'] \
trainer.project_name="${project_name}" \
trainer.experiment_name="${exp_name}" \
trainer.total_epochs=1 \
trainer.default_local_dir="${CKPT_HOME}" \
trainer.resume_mode=${RESUME_MODE} \
trainer.max_ckpt_to_keep=5 \
checkpoint.save_contents=[model,optimizer,extra]