Files
verl/tests/utils/test_config_on_cpu.py
Chi Zhang 5957412767 [rollout] feat: add rollout config (#3010)
### What does this PR do?

- Add rollout config

### Checklist Before Starting

- [ ] Search for similar PRs. Paste at least one query link here: ...
- [ ] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [ ] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [ ] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
2025-08-13 10:50:27 +08:00

98 lines
3.1 KiB
Python

# Copyright 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from dataclasses import dataclass, field
from omegaconf import OmegaConf
from verl.base_config import BaseConfig
from verl.utils import omega_conf_to_dataclass
@dataclass
class TestDataclass(BaseConfig):
hidden_size: int = 0
activation: str = "relu"
@dataclass
class TestTrainConfig(BaseConfig):
batch_size: int = 0
model: TestDataclass = field(default_factory=TestDataclass)
override_config: dict = field(default_factory=dict)
_cfg_str = """train_config:
_target_: tests.utils.test_config_on_cpu.TestTrainConfig
batch_size: 32
model:
hidden_size: 768
activation: relu
override_config: {}"""
class TestConfigOnCPU(unittest.TestCase):
"""Test cases for configuration utilities on CPU.
Test Plan:
1. Test basic OmegaConf to dataclass conversion for simple nested structures
2. Test nested OmegaConf to dataclass conversion for complex hierarchical configurations
3. Verify all configuration values are correctly converted and accessible
"""
def setUp(self):
self.config = OmegaConf.create(_cfg_str)
def test_omega_conf_to_dataclass(self):
sub_cfg = self.config.train_config.model
cfg = omega_conf_to_dataclass(sub_cfg, TestDataclass)
self.assertEqual(cfg.hidden_size, 768)
self.assertEqual(cfg.activation, "relu")
assert isinstance(cfg, TestDataclass)
def test_nested_omega_conf_to_dataclass(self):
cfg = omega_conf_to_dataclass(self.config.train_config, TestTrainConfig)
self.assertEqual(cfg.batch_size, 32)
self.assertEqual(cfg.model.hidden_size, 768)
self.assertEqual(cfg.model.activation, "relu")
assert isinstance(cfg, TestTrainConfig)
assert isinstance(cfg.model, TestDataclass)
class TestPrintCfgCommand(unittest.TestCase):
"""Test suite for the print_cfg.py command-line tool."""
def test_command_with_override(self):
"""Test that the command runs without error when overriding config values."""
import subprocess
# Run the command
result = subprocess.run(
["python3", "scripts/print_cfg.py"],
capture_output=True,
text=True,
)
# Verify the command exited successfully
self.assertEqual(result.returncode, 0, f"Command failed with stderr: {result.stderr}")
# Verify the output contains expected config information
self.assertIn("critic", result.stdout)
self.assertIn("profiler", result.stdout)
if __name__ == "__main__":
unittest.main()