Files
verl/scripts/legacy_model_merger.py
H 00a10a8ef3 [ci] refactor: reduce ruff line-length from 300 to 120 (#2287)
### What does this PR do?

Previously the ruff line-len is too large, making it hard for users to
view code. If we keep the config, manually created short lines will be
formatted to long lines as well. This PR contains 3 commits:
- df4bbfca62f41d972c48c8a76088ae2ac29691cf set line len to 120 and run
pre-commit auto-format
- 9d03f183edd9fff4e22215cacacf62c06b7b41d3 let devin fix the multi-line
code
- 9fc8d436f5007535fad3dc49983b01d0d457be9c skip lint for
test_sglang_async_rollout_sf_tools.py. manually adjust format for
rope_utils.py
- last two commits:
  1. merge with main
2. run lint after merge. add test_sglang_async_rollout_sf_tools.py and
scripts/legacy_model_merger.py to lint.exclude

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

This PR relies on CI for testing.


### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [ ] Read the [Contribute
Guide](https://github.com/volcengine/verl?tab=readme-ov-file#contribution-guide).
- [ ] Apply [pre-commit
checks](https://github.com/volcengine/verl?tab=readme-ov-file#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).

---------

Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com>
2025-07-01 09:54:40 +08:00

782 lines
33 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script is used to merge huggingface model and test verl checkpoints from FSDP and Megatron backends.
To merge FSDP checkpoints:
```sh
python scripts/legacy_model_merger.py merge \
--backend fsdp \
--local_dir checkpoints/verl_fsdp_gsm8k_examples/qwen2_5_0b5_fsdp_saveload/global_step_1/actor \
--target_dir /path/to/merged_hf_model
```
To merge Megatron checkpoints:
```sh
python scripts/legacy_model_merger.py merge \
--backend megatron \
--tie-word-embedding \
--local_dir checkpoints/verl_megatron_gsm8k_examples/qwen2_5_0b5_megatron_saveload/global_step_1/actor \
--target_dir /path/to/merged_hf_model
```
For more details, please refer to documentation:
https://verl.readthedocs.io/en/latest/advance/checkpoint.html#convert-fsdp-and-megatron-checkpoints-to-huggingface-format-model
"""
import argparse
import os
import re
import warnings
from abc import ABC, abstractmethod
from concurrent.futures import ThreadPoolExecutor
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
import numpy as np
import torch
from accelerate import init_empty_weights
from safetensors.torch import load_file
from torch.distributed._tensor import Placement, Shard
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoModelForTokenClassification,
AutoModelForVision2Seq,
GenerationConfig,
PretrainedConfig,
)
try:
# for torch 2.5+
from torch.distributed.tensor import DTensor
except ImportError:
from torch.distributed._tensor import DTensor
from tqdm import tqdm
from verl.utils import hf_processor, hf_tokenizer
@dataclass
class ModelMergerConfig:
operation: str # 'merge' or 'test'
backend: str
local_dir: str
hf_model_config_path: str
target_dir: Optional[str] = "tmp"
hf_upload_path: Optional[str] = None
private: bool = False
test_hf_dir: Optional[str] = None
tie_word_embedding: bool = False
is_value_model: bool = False
hf_model_path: Optional[str] = None
hf_upload: bool = field(init=False)
def __post_init__(self):
self.hf_upload = self.operation == "merge" and bool(self.hf_upload_path)
if self.operation == "test":
self.target_dir = None
self.hf_upload_path = None
self.private = False
class BaseModelMerger(ABC):
def __init__(self, config: ModelMergerConfig):
self.config = config
self.hf_model_config_path = config.hf_model_config_path
if config.hf_model_path:
print(
"Warning: --hf_model_path is deprecated and will be removed in a future version. Currently verl will save huggingface model configuration files into checkpoint directories. Therefore, there is no need to provide --hf_model_path. "
)
self.hf_model_config_path = config.hf_model_path
self.model_config = AutoConfig.from_pretrained(self.hf_model_config_path)
def get_transformers_auto_model_class(self):
if "ForTokenClassification" in self.model_config.architectures[0]:
return AutoModelForTokenClassification
elif "ForCausalLM" in self.model_config.architectures[0]:
return AutoModelForCausalLM
elif "ForConditionalGeneration" in self.model_config.architectures[0]:
return AutoModelForVision2Seq
raise NotImplementedError(f"Unknown architecture {self.model_config.architectures}")
def patch_model_generation_config(self, model):
"""
The generation_config created from model config may be different to the pretrained model,
this may lead to error when generating: https://github.com/volcengine/verl/issues/1246
This function patch the generation_config created from model config to the pretrained model.
"""
if model.can_generate():
try:
model.generation_config = GenerationConfig.from_pretrained(self.hf_model_config_path)
except OSError:
print(
f"Warning: Generation config file not found in {self.hf_model_config_path}, using a generation config created from the model config."
)
return model
def save_lora_adapter(self, state_dict: dict[str, torch.Tensor]):
"""
Save lora adapter to safetensors.
Returns:
lora_path: str, the path to the lora adapter. None if no lora adapter found.
Note:
This function change the 'state_dict' in place.
"""
lora_params_names = [name for name in state_dict.keys() if "lora_" in name]
if len(lora_params_names) == 0:
return None
import json
from typing import OrderedDict
import peft
from safetensors.torch import save_file
lora_params = OrderedDict()
target_modules = set()
lora_key = None
for name in lora_params_names:
lora_key = name.replace(".default.weight", ".weight")
target_modules.add(lora_key.split(".")[-3])
lora_params[lora_key] = state_dict.pop(name)
lora_rank = min(lora_params[lora_key].shape[0], lora_params[lora_key].shape[1])
peft_dict = {
"r": lora_rank,
"lora_alpha": 0, # lora_alpha is not set. An error should be raised to inform the user to set it manually.
"target_modules": list(target_modules),
}
peft_config = peft.LoraConfig(**peft_dict).to_dict()
peft_config["task_type"] = peft_config["task_type"].value if peft_config["task_type"] else None
peft_config["peft_type"] = peft_config["peft_type"].value if peft_config["peft_type"] else None
peft_config["target_modules"] = list(peft_config["target_modules"])
lora_path = os.path.join(self.config.target_dir, "lora_adapter")
os.makedirs(lora_path, exist_ok=True)
with open(os.path.join(lora_path, "adapter_config.json"), "w", encoding="utf-8") as f:
json.dump(peft_config, f, ensure_ascii=False, indent=4)
save_file(lora_params, os.path.join(lora_path, "adapter_model.safetensors"))
for name in list(state_dict.keys()):
key = (
name.replace("base_model.model.", "")
.replace(".base_layer.weight", ".weight")
.replace(".base_layer.bias", ".bias")
)
state_dict[key] = state_dict.pop(name)
return lora_path
def save_hf_model_and_tokenizer(self, state_dict: dict[str, torch.Tensor]):
auto_model_class = self.get_transformers_auto_model_class()
with init_empty_weights():
model = auto_model_class.from_config(self.model_config, torch_dtype=torch.bfloat16)
model.to_empty(device="cpu")
model = self.patch_model_generation_config(model)
lora_path = self.save_lora_adapter(state_dict)
if lora_path:
print(f"Saving lora adapter to {lora_path}")
print(f"Saving model to {self.config.target_dir}")
model.save_pretrained(self.config.target_dir, state_dict=state_dict)
del state_dict
del model
processor = hf_processor(self.hf_model_config_path)
tokenizer = hf_tokenizer(self.hf_model_config_path)
if processor is not None:
print(f"Saving processor to {self.config.target_dir}")
processor.save_pretrained(self.config.target_dir)
if tokenizer is not None:
print(f"Saving tokenizer to {self.config.target_dir}")
tokenizer.save_pretrained(self.config.target_dir)
def upload_to_huggingface(self):
from huggingface_hub import HfApi
api = HfApi()
api.create_repo(repo_id=self.config.hf_upload_path, private=self.config.private, exist_ok=True)
api.upload_folder(folder_path=self.config.target_dir, repo_id=self.config.hf_upload_path, repo_type="model")
@abstractmethod
def merge_and_save(self):
raise NotImplementedError("Subclasses should implement this method")
class FSDPModelMerger(BaseModelMerger):
def _get_world_size(self) -> int:
"""Extracts the FSDP world_size from checkpoint filenames (e.g., 'model_world_size_8_rank_0.pt')."""
for filename in os.listdir(self.config.local_dir):
match = re.match(r"model_world_size_(\d+)_rank_0\.pt", filename)
if match:
return int(match.group(1))
raise FileNotFoundError(
f"Could not determine world size. No file matching 'model_world_size_(\d+)_rank_0.pt' found in {self.config.local_dir}"
)
def _load_rank_zero_state_dict(self, world_size: int) -> dict:
return torch.load(
Path(self.config.local_dir) / f"model_world_size_{world_size}_rank_0.pt",
map_location="cpu",
weights_only=False,
)
def _extract_device_mesh_info(self, state_dict: dict, world_size: int) -> tuple[np.ndarray, tuple[str, ...]]:
"""
Retrieves sharding information (device_mesh, mesh_dim_names) from a DTensor in the state_dict.
If no DTensor is found, infers a simple FSDP mesh based on world_size.
"""
pivot_key = sorted(list(state_dict.keys()))[0]
weight = state_dict[pivot_key]
if isinstance(weight, DTensor):
# get sharding info
device_mesh = weight.device_mesh
mesh = device_mesh.mesh
mesh_dim_names = device_mesh.mesh_dim_names
else:
# for non-DTensor
mesh = np.array([world_size], dtype=np.int64)
mesh_dim_names = ("fsdp",)
return mesh, mesh_dim_names
def _calculate_shard_configuration(
self, mesh: np.ndarray, mesh_dim_names: tuple[str, ...]
) -> tuple[int, tuple[int, ...]]:
"""Calculates the total number of shards and the shape of the device mesh."""
assert mesh_dim_names in (("fsdp",), ("ddp", "fsdp")), f"Unsupported mesh_dim_names {mesh_dim_names}"
if "tp" in mesh_dim_names:
# TODO: "tp" is not supported yet due to the above assert
total_shards = mesh.shape[-1] * mesh.shape[-2]
mesh_shape = (mesh.shape[-2], mesh.shape[-1])
else:
total_shards = mesh.shape[-1]
mesh_shape = (mesh.shape[-1],)
return total_shards, mesh_shape
def _merge_by_placement(self, tensors: list[torch.Tensor], placement: Placement) -> torch.Tensor:
"""Merges a list of tensors based on their DTensor placement"""
if placement.is_replicate():
return tensors[0]
elif placement.is_partial():
raise NotImplementedError("Partial placement is not supported yet")
elif placement.is_shard():
return torch.cat(tensors, dim=placement.dim).contiguous()
raise NotImplementedError(f"Unsupported placement: {placement}")
def _load_and_merge_state_dicts(
self, world_size: int, total_shards: int, mesh_shape: tuple[int, ...], mesh_dim_names: tuple[str, ...]
) -> dict[str, torch.Tensor]:
model_state_dict_lst = [None] * total_shards
def process_one_shard(rank: int, model_state_dict_lst: list):
model_path = Path(self.config.local_dir) / f"model_world_size_{world_size}_rank_{rank}.pt"
state_dict = torch.load(model_path, map_location="cpu", weights_only=False)
model_state_dict_lst[rank] = state_dict
return state_dict
with ThreadPoolExecutor(max_workers=min(32, os.cpu_count())) as executor:
futures = [executor.submit(process_one_shard, rank, model_state_dict_lst) for rank in range(total_shards)]
for future in tqdm(futures, desc=f"Loading {total_shards} FSDP shards", total=total_shards):
future.result()
# Merge state dicts from all shards
state_dict = {}
param_placements: dict[str, list] = {}
for key in set(model_state_dict_lst[0].keys()):
state_dict[key] = []
for model_state_shard in model_state_dict_lst:
# add tensor shard in order of rank to state_dict[key]
tensor = model_state_shard.pop(key)
if isinstance(tensor, DTensor):
state_dict[key].append(tensor._local_tensor.bfloat16())
placements = tuple(tensor.placements)
# replicated placement at dp dimension can be discarded
if mesh_dim_names[0] in ("dp", "ddp"):
placements = placements[1:]
if key not in param_placements:
param_placements[key] = placements
else:
assert param_placements[key] == placements
else:
state_dict[key].append(tensor.bfloat16())
del model_state_dict_lst
# Merge tensors
for key in sorted(state_dict):
if not isinstance(state_dict[key], list):
print(f"No need to merge key {key}")
continue
if key in param_placements:
# merge shards
placements: tuple[Shard] = param_placements[key]
if len(mesh_shape) == 1:
# 1-D list, FSDP without TP
assert len(placements) == 1
shards = state_dict[key]
state_dict[key] = self._merge_by_placement(shards, placements[0])
else:
# 2-D list, FSDP + TP
raise NotImplementedError("FSDP + TP is not supported yet")
else:
state_dict[key] = torch.cat(state_dict[key], dim=0)
return state_dict
def merge_and_save(self):
world_size = self._get_world_size()
rank_zero_state_dict = self._load_rank_zero_state_dict(world_size)
mesh, mesh_dim_names = self._extract_device_mesh_info(rank_zero_state_dict, world_size)
print(f"Got device mesh {mesh}, mesh_dim_names {mesh_dim_names}")
total_shards, mesh_shape = self._calculate_shard_configuration(mesh, mesh_dim_names)
print(f"Processing model shards with {total_shards} {mesh_shape} in total")
merged_state_dict = self._load_and_merge_state_dicts(world_size, total_shards, mesh_shape, mesh_dim_names)
if self.config.operation == "test":
if not self.config.test_hf_dir:
raise ValueError("test_hf_dir must be provided for test operation")
self._test_state_dict(merged_state_dict)
elif self.config.operation == "merge":
self.save_hf_model_and_tokenizer(merged_state_dict)
if self.config.hf_upload:
self.upload_to_huggingface()
else:
raise ValueError(f"Unknown operation: {self.config.operation}")
def _test_state_dict(self, state_dict: dict[str, torch.Tensor]):
auto_model_class = self.get_transformers_auto_model_class()
hf_model = auto_model_class.from_pretrained(self.config.test_hf_dir, torch_dtype=torch.bfloat16)
hf_state_dict = hf_model.state_dict()
del hf_model
hf_model_keys = set(hf_state_dict.keys())
collected_keys = set(state_dict.keys())
missing_keys = hf_model_keys - collected_keys
assert len(missing_keys) == 0, f"Missing keys in collected state dict: {list(sorted(missing_keys))}"
extra_keys = collected_keys - hf_model_keys
assert len(extra_keys) == 0, f"Extra keys in collected state dict: {list(sorted(extra_keys))}"
for key in hf_model_keys:
hf_shape = hf_state_dict[key].shape
collected_shape = state_dict[key].shape
assert hf_shape == collected_shape, (
f"Shape mismatch for key '{key}': original {hf_shape} vs collected {collected_shape}"
)
hf_dtype = hf_state_dict[key].dtype
collected_dtype = state_dict[key].dtype
assert hf_dtype == collected_dtype, (
f"Dtype mismatch for key '{key}': original {hf_dtype} vs collected {collected_dtype}"
)
torch.testing.assert_close(hf_state_dict[key], state_dict[key], atol=1e-6, rtol=1e-6)
print("FSDP checks passed: The merged state_dict matches the hf model saved by FSDPCheckpointManager.")
class MegatronModelMerger(BaseModelMerger):
def __init__(self, config: ModelMergerConfig):
from verl.utils.megatron_utils import get_hf_config_and_tokenizer_checkpoint_path
config.hf_model_config_path = get_hf_config_and_tokenizer_checkpoint_path(config.local_dir)
super().__init__(config)
self.params_mapping = {
# megatron core gpt model name, huggingface model name
# NOTICE: It's a little bit tricky, when 2 keys have the same prefix, we need to make sure the longer key within the containing relationship is processed first.
"embedding.word_embeddings": "model.embed_tokens",
# attn
"self_attention.linear_qkv.layer_norm_weight": "input_layernorm.weight",
"self_attention.linear_qkv.layer_norm_bias": "input_layernorm.bias",
"self_attention.linear_qkv": "self_attn.qkv_proj",
"self_attention.q_layernorm": "self_attn.q_norm",
"self_attention.k_layernorm": "self_attn.k_norm",
"self_attention.linear_proj": "self_attn.o_proj",
# mla
"self_attention.linear_q_proj": "self_attn.q_proj",
"self_attention.linear_q_down_proj": "self_attn.q_a_proj",
"self_attention.linear_q_up_proj.layer_norm_weight": "self_attn.q_a_layernorm.weight",
"self_attention.linear_q_up_proj": "self_attn.q_b_proj",
"self_attention.linear_kv_down_proj": "self_attn.kv_a_proj_with_mqa",
"self_attention.linear_kv_up_proj.layer_norm_weight": "self_attn.kv_a_layernorm.weight",
"self_attention.linear_kv_up_proj": "self_attn.kv_b_proj",
# mlp
"pre_mlp_layernorm": "post_attention_layernorm",
"mlp.linear_fc1.layer_norm_weight": "post_attention_layernorm.weight",
"mlp.linear_fc1.layer_norm_bias": "post_attention_layernorm.bias",
"mlp.linear_fc1": "mlp.gate_up_proj",
"mlp.linear_fc2": "mlp.down_proj",
# moe
"mlp.router.expert_bias": "mlp.gate.e_score_correction_bias",
"mlp.router": "mlp.gate",
"mlp.shared_experts.linear_fc1": "mlp.shared_experts.gate_up_proj",
"mlp.shared_experts.linear_fc2": "mlp.shared_experts.down_proj",
"linear_fc1": "gate_up_proj",
"linear_fc2": "down_proj",
# output
"final_layernorm": "norm",
"output_layer": "lm_head",
}
def _get_tp_pp_rank_from_sharded_dir(self, sharded_dir: str) -> tuple[int, int]:
tp_rank = pp_rank = None
rank_list = sharded_dir.split("_")[2:]
if re.match(r"mp_rank_(\d\d)_(\d\d\d)", sharded_dir):
tp_rank = int(rank_list[0])
pp_rank = int(rank_list[1])
elif re.match(r"mp_rank_(\d\d)", sharded_dir):
tp_rank = int(rank_list[0])
pp_rank = 0
assert tp_rank is not None and pp_rank is not None, f"Invalid sharded dir {sharded_dir}"
return tp_rank, pp_rank
def _check_megatron_checkpoint_path(self, model_path: str) -> tuple[list[str], int, int]:
"""
Validates the Megatron checkpoint structure (presence of 'model.pt' in sharded directories).
Determines TP and PP sizes from directory names.
"""
tp_size = 0
pp_size = 0
sharded_dirs = sorted(os.listdir(model_path))
for sharded_dir in sharded_dirs:
assert "model.pt" in os.listdir(Path(model_path) / sharded_dir), f"model.pt not found in {sharded_dir}"
tp_rank, pp_rank = self._get_tp_pp_rank_from_sharded_dir(sharded_dir)
tp_size = max(tp_size, tp_rank + 1)
pp_size = max(pp_size, pp_rank + 1)
return sharded_dirs, tp_size, pp_size
def _merge_across_tp(
self,
key: str,
tp_data: list[torch.Tensor],
config: PretrainedConfig,
tp_size: int,
is_value_model: bool = False,
) -> Union[torch.Tensor, list[torch.Tensor]]:
if "linear_fc1.weight" in key:
# if the tensor is gate and proj
gate_lst = []
up_lst = []
for infer_param in tp_data:
gate, up = infer_param.chunk(2)
gate_lst.append(gate)
up_lst.append(up)
gate = torch.cat(gate_lst, dim=0)
up = torch.cat(up_lst, dim=0)
return [gate, up]
elif "self_attention.linear_qkv." in key and "layer_norm" not in key:
# if the tensor is qkv, for each param on tp, split into q, k, v
# concat q, k, v separately.
q_lst = []
k_lst = []
v_lst = []
assert config.num_attention_heads % config.num_key_value_heads == 0
num_q_per_kv = config.num_attention_heads // config.num_key_value_heads
assert tp_data[0].shape[0] % (num_q_per_kv + 2) == 0
kv_size_per_tp = tp_data[0].shape[0] // (num_q_per_kv + 2)
split_size = [kv_size_per_tp * num_q_per_kv, kv_size_per_tp, kv_size_per_tp]
for infer_param in tp_data:
num_query_groups_per_partition = config.num_key_value_heads // tp_size
for chunk in infer_param.chunk(num_query_groups_per_partition):
split_size = [
kv_size_per_tp * num_q_per_kv // num_query_groups_per_partition,
kv_size_per_tp // num_query_groups_per_partition,
kv_size_per_tp // num_query_groups_per_partition,
]
q, k, v = chunk.split(split_size)
q_lst.append(q)
k_lst.append(k)
v_lst.append(v)
q = torch.cat(q_lst, dim=0)
k = torch.cat(k_lst, dim=0)
v = torch.cat(v_lst, dim=0)
return [q, k, v]
elif "layer_norm" in key or "layernorm" in key or "router" in key or ("output_layer" in key and is_value_model):
return tp_data[0]
else:
dim = 0
if "linear_fc2.weight" in key or "self_attention.linear_proj" in key:
dim = 1
return torch.cat(tp_data, dim=dim)
def _load_state_dicts(
self, model_ckpt_path: str, sharded_dirs: list[str], tp_size: int, pp_size: int
) -> list[list[dict]]:
model_state_dict_lst = [[None for _ in range(tp_size)] for _ in range(pp_size)]
def _process_one_megatron_shard(sharded_dir: str):
model_file_path = Path(model_ckpt_path) / sharded_dir / "model.pt"
state_dict = torch.load(model_file_path, map_location="cpu", weights_only=False)
tp_rank, pp_rank = self._get_tp_pp_rank_from_sharded_dir(sharded_dir)
model_state_dict_lst[pp_rank][tp_rank] = state_dict
with ThreadPoolExecutor(max_workers=min(32, os.cpu_count())) as executor:
futures = [executor.submit(_process_one_megatron_shard, sharded_dir) for sharded_dir in sharded_dirs]
for future in tqdm(futures, desc=f"Loading {len(sharded_dirs)} Megatron shards", total=len(sharded_dirs)):
future.result()
return model_state_dict_lst
def _check_megatron_state_key(self, key: str) -> bool:
"""
Checks if the key is a valid Megatron state key.
Now the model merger only supports keys that start with "decoder/embedding/output_layer" in TransformerLayer.
Shall not use key starts with "model."
"""
if key.startswith("model."):
raise ValueError(
f"Invalid key {key} in Megatron state_dict. Expected keys to start with 'decoder/embedding/output_layer' in TransformerLayer."
)
skip_checking_keys = ["embedding.word_embeddings", "output_layer"]
for skip_key in skip_checking_keys:
if skip_key in key:
print(f"skip checking key {key}")
return
# Exclude extra state keys
if not key.startswith("decoder"):
raise ValueError(
f"Invalid key {key} in Megatron state_dict. Expected keys to start with 'decoder' in TransformerLayer."
)
def _merge_state_dicts(
self, model_state_dict_lst: list[list[dict]], tp_size: int, pp_size: int
) -> dict[str, torch.Tensor]:
state_dict = {}
vpp_size = len(model_state_dict_lst[0][0])
layers_cum = 0
for vpp_rank in range(vpp_size):
for pp_rank in range(pp_size):
layers_handled = 0
keys = model_state_dict_lst[pp_rank][0][vpp_rank].keys()
for key in keys:
if "extra_state" in key:
continue
if self.config.tie_word_embedding and ("output_layer" in key):
print("skip lm_head and reward_head loading because of tie_word_embeddings")
continue
self._check_megatron_state_key(key)
hf_name = self._replace_name(key, self.params_mapping)
assert hf_name is not None, f"Failed to convert layer name [{key}] from megatron to huggingface."
if "model.layers." in hf_name:
local_layer_no = int(hf_name.split(".")[2])
layers_handled = max(local_layer_no, layers_handled)
global_layer_no = local_layer_no + layers_cum
new_key_list = hf_name.split(".")
new_key_list[2] = str(global_layer_no)
hf_name = ".".join(new_key_list)
else:
warnings.warn(f"hf_name {hf_name} will not be fixed with layer number", stacklevel=2)
tp_data = [model_state_dict_lst[pp_rank][tp_rank][vpp_rank][key] for tp_rank in range(tp_size)]
merged = self._merge_across_tp(key, tp_data, self.model_config, tp_size, self.config.is_value_model)
if not isinstance(merged, list):
state_dict[hf_name] = merged
elif len(merged) == 3:
# split qkv
for n, d in zip(["q", "k", "v"], merged):
state_dict[hf_name.replace("qkv", n)] = d
elif len(merged) == 2:
# split gate up
state_dict[hf_name.replace("gate_up", "gate")] = merged[0]
state_dict[hf_name.replace("gate_up", "up")] = merged[1]
print(
f"converted {key} to {hf_name} with shape {merged.shape if isinstance(merged, torch.Tensor) else [t.shape for t in merged]}"
)
layers_cum += layers_handled + 1 # zero based
return state_dict
def merge_and_save(self):
from verl.utils.megatron_utils import get_model_checkpoint_path
model_ckpt_path = get_model_checkpoint_path(self.config.local_dir)
sharded_dirs, tp_size, pp_size = self._check_megatron_checkpoint_path(model_ckpt_path)
print(f"sharded_dirs: {sharded_dirs}, tp_size: {tp_size}, pp_size: {pp_size}, mp_size: {len(sharded_dirs)}")
model_state_dict_lst = self._load_state_dicts(model_ckpt_path, sharded_dirs, tp_size, pp_size)
merged_state_dict = self._merge_state_dicts(model_state_dict_lst, tp_size, pp_size)
del model_state_dict_lst
if self.config.operation == "test":
if not self.config.test_hf_dir:
raise ValueError("test_hf_dir must be provided for test operation")
self._test_state_dict(merged_state_dict)
elif self.config.operation == "merge":
self.save_hf_model_and_tokenizer(merged_state_dict)
if self.config.hf_upload:
self.upload_to_huggingface()
else:
raise ValueError(f"Unknown operation: {self.config.operation}")
def _test_state_dict(self, state_dict: dict[str, torch.Tensor]):
"""
Compares the merged Megatron state_dict against a reference safetensors model.
Applies necessary name mappings from Megatron to Hugging Face conventions using _replace_name.
"""
ref_state_dict = load_file(Path(self.config.test_hf_dir) / "model.safetensors")
for name, loaded_weight in state_dict.items():
# name = self._replace_name(original_name, self.params_mapping)
if not name or name.endswith(".bias") and name not in ref_state_dict:
continue
if "rotary_emb.inv_freq" in name:
continue
if self.config.tie_word_embedding and "lm_head.weight" in name:
continue
if name not in ref_state_dict:
raise RuntimeError(f"key: {name} not exist in state_dict")
param = ref_state_dict[name]
assert loaded_weight.dtype == param.dtype
torch.testing.assert_close(loaded_weight, param, atol=1e-2, rtol=5e-2)
def _replace_name(self, megatron_name: str, name_mapping: dict[str, str]) -> str:
for m_name, v_name in name_mapping.items():
if m_name not in megatron_name:
continue
megatron_name = megatron_name.replace("decoder", "model")
param_name = megatron_name.replace(m_name, v_name)
return param_name
return None # Return None if no mapping found
def main():
parser = argparse.ArgumentParser(description="verl model merger")
subparsers = parser.add_subparsers(dest="operation", required=True, help="Specify 'merge' or 'test' operation.")
base_op_parser = argparse.ArgumentParser(add_help=False)
base_op_parser.add_argument(
"--backend", type=str, required=True, choices=["fsdp", "megatron"], help="The backend of the model"
)
base_op_parser.add_argument("--local_dir", type=str, required=True, help="Path to the saved model checkpoints")
base_op_parser.add_argument(
"--hf_model_path",
type=str,
default=None,
help="(Deprecated) Path to the original Hugging Face model for config.",
)
base_op_parser.add_argument(
"--tie-word-embedding",
action="store_true",
help="Whether to tie word embedding weights (currently only Megatron supported)",
)
base_op_parser.add_argument(
"--is-value-model",
action="store_true",
help="Whether the model is a value model (currently only Megatron supported)",
)
merge_parser = subparsers.add_parser("merge", parents=[base_op_parser], help="Merge model checkpoints and save.")
merge_parser.add_argument(
"--target_dir", default="tmp", type=str, help="Directory to save the merged huggingface model"
)
merge_parser.add_argument(
"--hf_upload_path", default=None, type=str, help="Hugging Face repository ID to upload the model"
)
merge_parser.add_argument(
"--private", action="store_true", help="Whether to upload the model to a private Hugging Face repository"
)
test_parser = subparsers.add_parser(
"test", parents=[base_op_parser], help="Test merged model against a reference Hugging Face model"
)
test_parser.add_argument(
"--test_hf_dir", type=str, required=True, help="Path to the reference Hugging Face model directory for testing"
)
args = parser.parse_args()
common_config_args = {
"operation": args.operation,
"backend": args.backend,
"tie_word_embedding": args.tie_word_embedding,
"is_value_model": args.is_value_model,
"local_dir": args.local_dir,
"hf_model_path": args.hf_model_path,
"hf_model_config_path": args.local_dir,
}
if args.operation == "merge":
config = ModelMergerConfig(
**common_config_args,
target_dir=args.target_dir,
hf_upload_path=args.hf_upload_path,
private=args.private,
test_hf_dir=None,
)
os.makedirs(config.target_dir, exist_ok=True)
elif args.operation == "test":
config = ModelMergerConfig(
**common_config_args,
test_hf_dir=args.test_hf_dir,
# the following args are not used by test operation
target_dir=None,
hf_upload_path=None,
private=False,
)
else:
raise NotImplementedError(f"Unknown operation: {args.operation}")
if config.backend == "fsdp":
merger = FSDPModelMerger(config)
elif config.backend == "megatron":
merger = MegatronModelMerger(config)
else:
raise NotImplementedError(f"Unknown backend: {config.backend}")
merger.merge_and_save()
if __name__ == "__main__":
main()