mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 13:43:50 +08:00
### What does this PR do? > Rename `warmup_style` in FSDPOptimizerConfig to `lr_scheduler_type` to align with Hugging Face Trainer API。 The following pull request is for refactoring the optimizer, however, the naming issue persists. https://github.com/volcengine/verl/pull/3656 ### Checklist Before Starting - [x] Search for similar PRs. Paste at least one query link here: ... - [x] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc. ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### Design & Code Changes > Demonstrate the high-level design if this PR is complex, and list the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [x] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [x] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [x] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [x] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). (If not accessible, please try [the Feishu group (飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).) --------- Co-authored-by: weiqi.li <weiqi.li@bytedance.com>
77 lines
2.2 KiB
YAML
77 lines
2.2 KiB
YAML
# the prime config will override default ppo_trainer.yaml
|
|
|
|
hydra:
|
|
searchpath:
|
|
- file://verl/trainer/config
|
|
|
|
defaults:
|
|
- ppo_trainer
|
|
- _self_
|
|
|
|
data:
|
|
filter_accuracy: True
|
|
accuracy_lower_bound: 0.2
|
|
accuracy_upper_bound: 0.8
|
|
oversample_factor: 4.0 # Sample more responses than the batch size. prompts satisfying the filter will be prioritized.
|
|
filter_truncate: True
|
|
truncation: right
|
|
|
|
actor_rollout_ref:
|
|
hybrid_engine: True
|
|
model:
|
|
use_remove_padding: True
|
|
rollout:
|
|
# number of responses (i.e. num sample times)
|
|
n: 4
|
|
actor:
|
|
entropy_coeff: 0.001
|
|
|
|
reward_model:
|
|
enable: True
|
|
strategy: fsdp
|
|
model:
|
|
ref_path: ${reward_model.model.path}
|
|
use_remove_padding: True
|
|
use_fused_kernels: ${actor_rollout_ref.model.use_fused_kernels}
|
|
fused_kernel_options:
|
|
impl_backend: torch # triton, torch
|
|
tokenizer_path: ${actor_rollout_ref.model.path}
|
|
enable_gradient_checkpointing: ${actor_rollout_ref.model.enable_gradient_checkpointing}
|
|
ref_type: freeze
|
|
fsdp_config:
|
|
min_num_params: 0
|
|
param_offload: ${actor_rollout_ref.actor.fsdp_config.param_offload}
|
|
optimizer_offload: ${actor_rollout_ref.actor.fsdp_config.optimizer_offload}
|
|
update: before # ``before`` for double-forward, ``after`` for single-forward
|
|
optim:
|
|
lr: 1e-6
|
|
lr_warmup_steps: -1 # Prioritized. Negative values mean delegating to lr_warmup_steps_ratio.
|
|
lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
|
|
min_lr_ratio: null
|
|
warmup_style: null # deprecated
|
|
lr_scheduler_type: constant
|
|
total_training_steps: -1 # must be overridden by program
|
|
weight_decay: 0.
|
|
grad_clip: 10.0
|
|
beta_train: 0.05
|
|
loss_type: ce # currently only supports ce loss
|
|
prime_granularity: token
|
|
prime_norm: batch_norm # batch_norm or none. if set to none, the normalizer is beta_train
|
|
mini_batch_size: ${actor_rollout_ref.actor.ppo_mini_batch_size}
|
|
reward_manager: prime
|
|
|
|
algorithm:
|
|
adv_estimator: rloo
|
|
# now supports rloo. it treats different source of reward separately.
|
|
kl_ctrl:
|
|
type: fixed
|
|
kl_coef: 0.000
|
|
reward_gt_coef: 5
|
|
reward_dpo_coef: 5
|
|
|
|
trainer:
|
|
project_name: prime
|
|
experiment_name: examples
|
|
val_before_train: False
|
|
balance_batch: False
|