Files
verl/docs/sglang_multiturn/interaction_system.rst
Qiao 2fdfbdcba6 [doc] fix: Fix the role assignment error in the interaction demo file and doc. (#2476)
### What does this PR do?

Fix the role assignment error in the interaction demo file
verl/interactions/gsm8k_interaction.py and doc. The assistant is
expected to solve problems, while users provide problems and feedback
within the messages list.

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

Update tests/interactions/test_gsm8k_interaction.py.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [x] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [x] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [x] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).

---------

Co-authored-by: H <linhaibin.eric@gmail.com>
2025-08-02 17:04:15 -07:00

417 lines
15 KiB
ReStructuredText

Interaction System for Multi-turn RL Training
=============================================
Last updated: 06/25/2025.
Overview
--------
The verl interaction system enables dynamic, multi-turn conversational feedback during reinforcement learning training. This system allows models to engage in iterative problem-solving scenarios where interaction agents can provide corrective feedback, guidance, or evaluation based on the model's responses.
**New in Multi-Interaction Support**: The system now supports multiple named interactions within a single training session, enabling sophisticated training scenarios where different samples can use different interaction strategies. This allows for curriculum learning, domain-specific feedback, and flexible agent switching at the sample level.
Key features:
- **Async-based Architecture**: Non-blocking interaction processing for distributed training
- **Instance Management**: Stateful session handling with unique instance IDs for concurrent interactions
- **SGLang Integration**: Seamless integration with SGLang rollout system for multi-turn conversations
- **Configuration-driven**: Dynamic agent loading via YAML configuration files
- **Multi-Interaction Support**: Registry system enabling multiple named interactions per rollout
- **Sample-Level Selection**: Each sample can specify which interaction to use via configuration
- **Reward Integration**: Turn-level scoring mechanism integrated with verl's reward system
Architecture
------------
The interaction system follows a plugin-based architecture with clear separation of concerns:
.. code-block::
Interaction Registry System
BaseInteraction (Abstract Interface)
Multiple Named Interactions (e.g., Gsm8kInteraction, CustomInteraction)
SGLang Rollout Integration (interaction_map)
Sample-Level Interaction Selection
Async Request Lifecycle Management
Core Components
~~~~~~~~~~~~~~~
**Interaction Registry System**
The interaction registry system allows loading and managing multiple named interactions:
.. code-block:: python
from verl.interactions.utils.interaction_registry import initialize_interactions_from_config
# Load multiple interactions from config
interaction_map = initialize_interactions_from_config("config.yaml")
# Access specific interaction by name
gsm8k_interaction = interaction_map["gsm8k"]
custom_interaction = interaction_map["custom_solver"]
**BaseInteraction Interface**
All interaction agents must implement the ``BaseInteraction`` abstract class:
.. code-block:: python
from verl.interactions.base import BaseInteraction
from typing import Dict, Any, List, Tuple, Optional
class BaseInteraction:
def __init__(self, config: Dict[str, Any]):
self.config = config
self.name: str = config.get("name", "interaction_agent")
async def start_interaction(self, instance_id: Optional[str] = None, **kwargs) -> str:
"""Initialize interaction session, return instance_id"""
async def generate_response(self, instance_id: str, messages: List[Dict[str, Any]], **kwargs) -> Tuple[bool, str, float, Dict[str, Any]]:
"""Generate response, return (should_terminate, response, score, metadata)"""
async def calculate_score(self, instance_id: str, **kwargs) -> float:
"""Calculate turn-level score for RL training"""
async def finalize_interaction(self, instance_id: str, **kwargs) -> None:
"""Clean up resources"""
**Request Lifecycle**
The interaction system integrates with SGLang's async rollout via state management:
1. ``PENDING`` → Initialize interaction via ``start_interaction()``
2. ``GENERATING`` → Model generates response
3. ``INTERACTING`` → Process response via ``generate_response()``
4. ``GENERATING`` → Continue if not terminated, otherwise ``COMPLETED``
Configuration
-------------
**Basic Setup**
Enable interaction in your rollout configuration:
.. code-block:: yaml
actor_rollout_ref:
rollout:
multi_turn:
enable: true
interaction_config_path: "path/to/interaction_config.yaml"
max_user_turns: 10
max_assistant_turns: 10
**Interaction Configuration File**
Create an interaction configuration file (e.g., ``interaction_config.yaml``):
**Single Interaction (Legacy Format)**
.. code-block:: yaml
interaction:
- name: "gsm8k"
class_name: "verl.interactions.gsm8k_interaction.Gsm8kInteraction"
config: {}
**Multiple Interactions (New Format)**
.. code-block:: yaml
interaction:
- name: "gsm8k"
class_name: "verl.interactions.gsm8k_interaction.Gsm8kInteraction"
config: {}
- name: "custom_solver"
class_name: "custom.interactions.CustomInteraction"
config:
solver_type: "advanced"
timeout: 30
- name: "code_verifier"
class_name: "verl.interactions.base.BaseInteraction"
config:
verification_mode: "strict"
**Automatic Name Generation**
If no ``name`` field is provided, the system will automatically generate one from the class name:
.. code-block:: yaml
interaction:
- class_name: "verl.interactions.gsm8k_interaction.Gsm8kInteraction"
config: {}
# Automatically generates name: "gsm8k"
The system will dynamically load all specified interaction classes and make them available by name.
Implementation Example: GSM8K
-----------------------------
The GSM8K interaction demonstrates a complete implementation for math problem-solving scenarios:
.. code-block:: python
from verl.interactions.base import BaseInteraction
from verl.utils.reward_score import gsm8k
from uuid import uuid4
class Gsm8kInteraction(BaseInteraction):
def __init__(self, config: dict):
super().__init__(config)
self._instance_dict = {}
async def start_interaction(self, instance_id=None, ground_truth=None, **kwargs):
if instance_id is None:
instance_id = str(uuid4())
self._instance_dict[instance_id] = {
"response": "",
"ground_truth": ground_truth,
"reward": 0.0,
}
return instance_id
async def generate_response(self, instance_id, messages, **kwargs):
# Extract last assistant message content
content = ""
for item in reversed(messages):
if item.get("role") == "assistant":
content = item.get("content", "")
break
# Ensure GSM8K format (#### prefix)
self._instance_dict[instance_id]["response"] = content
reward = await self.calculate_score(instance_id)
if reward == 1.0:
return True, "Your response is correct!", 1.0, {}
else:
return False, "Your response is incorrect! You need to reflect on your answer and try again.", 0.0, {}
async def calculate_score(self, instance_id, **kwargs):
return gsm8k.compute_score(
self._instance_dict[instance_id]["response"],
self._instance_dict[instance_id]["ground_truth"],
method="strict", format_score=0.0, score=1.0,
)
async def finalize_interaction(self, instance_id, **kwargs):
del self._instance_dict[instance_id]
Training Integration
--------------------
**Training Script Configuration**
Include interaction configuration in your training command:
.. code-block:: bash
python3 -m verl.trainer.main_ppo \\
--config-path="$CONFIG_PATH" \\
--config-name='gsm8k_multiturn_grpo_w_interaction' \\
algorithm.adv_estimator=grpo \\
data.train_batch_size=512 \\
data.return_raw_chat=True \\
actor_rollout_ref.rollout.name=sglang \\
actor_rollout_ref.rollout.multi_turn.interaction_config_path="$PROJECT_DIR/examples/sglang_multiturn/config/interaction_config/gsm8k_interaction_config.yaml" \\
trainer.total_epochs=15
**Data Requirements**
Ensure your dataset includes interaction parameters with the ``name`` field for interaction selection:
.. code-block:: python
# Dataset should include interaction_kwargs in non_tensor_batch
interaction_kwargs = [
{"name": "gsm8k", "query": "What is 2+2?", "ground_truth": "4"},
{"name": "custom_solver", "query": "Solve: x^2 + 5x + 6 = 0", "ground_truth": "x = -2, -3"},
{"name": "gsm8k", "query": "What is 3+3?", "ground_truth": "6"},
]
**Sample-Level Interaction Selection**
Each sample can specify which interaction to use via the ``name`` field. This enables flexible training scenarios where different samples use different interaction strategies:
.. code-block:: python
# Example: Math problems use GSM8K interaction, code problems use code verifier
data_samples = [
{
"prompt": "What is 15% of 200?",
"interaction_kwargs": {
"name": "gsm8k",
"query": "What is 15% of 200?",
"ground_truth": "30"
}
},
{
"prompt": "Write a function to check if a number is prime",
"interaction_kwargs": {
"name": "code_verifier",
"code_type": "python",
"expected_behavior": "return True for prime numbers"
}
}
]
**Backward Compatibility**
If no ``name`` field is provided in ``interaction_kwargs``, the system defaults to ``"gsm8k"`` for backward compatibility.
Best Practices
--------------
**Resource Management**
- Always implement proper cleanup in ``finalize_interaction()``
- Use unique instance IDs to avoid conflicts in concurrent training
- Handle edge cases like empty messages or malformed content
**Performance Optimization**
- Keep interaction logic lightweight to avoid blocking training
- Use async/await properly to maintain non-blocking behavior
- Consider caching expensive computations within interaction instances
**Testing**
Comprehensive testing is essential for interaction systems:
.. code-block:: python
import pytest
from unittest.mock import patch
@pytest.mark.asyncio
async def test_interaction_workflow():
interaction = YourInteraction({})
# Test complete workflow
instance_id = await interaction.start_interaction(ground_truth="expected_answer")
messages = [{"role": "user", "content": "user_content"}, {"role": "assistant", "content": "assistant_content"}]
should_terminate, response, reward, metadata = await interaction.generate_response(instance_id, messages)
assert should_terminate in [True, False]
assert isinstance(reward, float)
await interaction.finalize_interaction(instance_id)
Advanced Usage
--------------
**Multi-Interaction Training Strategies**
You can design sophisticated training scenarios using multiple interactions:
.. code-block:: python
# Example: Progressive difficulty with different interaction agents
class MathTrainingPipeline:
def create_interaction_config(self):
return {
"interaction": [
{
"name": "basic_math",
"class_name": "verl.interactions.gsm8k_interaction.Gsm8kInteraction",
"config": {"difficulty": "easy"}
},
{
"name": "advanced_math",
"class_name": "custom.interactions.AdvancedMathInteraction",
"config": {"difficulty": "hard", "allow_hints": True}
},
{
"name": "competition_math",
"class_name": "custom.interactions.CompetitionMathInteraction",
"config": {"time_limit": 300, "show_steps": False}
}
]
}
def create_curriculum_data(self, epoch):
if epoch < 5:
return [{"name": "basic_math", ...} for _ in samples]
elif epoch < 10:
return [{"name": "advanced_math", ...} for _ in samples]
else:
return [{"name": "competition_math", ...} for _ in samples]
**Custom Scoring Functions**
You can integrate custom reward functions:
.. code-block:: python
async def calculate_score(self, instance_id, **kwargs):
response = self._instance_dict[instance_id]["response"]
ground_truth = self._instance_dict[instance_id]["ground_truth"]
# Custom evaluation logic
if custom_evaluation_function(response, ground_truth):
return 1.0
else:
return 0.0
**Multi-step Interactions**
For complex scenarios requiring multiple feedback rounds:
.. code-block:: python
async def generate_response(self, instance_id, messages, **kwargs):
instance = self._instance_dict[instance_id]
instance["attempts"] += 1
# Evaluate current response
reward = await self.calculate_score(instance_id)
if reward > 0.8:
return True, "Excellent work!", reward, {}
elif instance["attempts"] < 3:
return False, "Good attempt, but try to improve...", reward, {}
else:
return True, "Maximum attempts reached.", reward, {}
Troubleshooting
---------------
**Common Issues**
1. **Instance ID Conflicts**: Ensure unique instance IDs across concurrent sessions
2. **Memory Leaks**: Always call ``finalize_interaction()`` to clean up resources
3. **Blocking Operations**: Keep interaction logic async and non-blocking
4. **Configuration Errors**: Verify interaction config path and class name are correct
5. **Interaction Name Conflicts**: Ensure all interactions have unique names in the configuration
6. **Missing Interaction**: Verify the ``name`` field in ``interaction_kwargs`` matches available interactions
7. **Backward Compatibility**: When migrating from single to multi-interaction, add ``name`` fields to existing data
**Debugging**
Enable debug logging to trace interaction flow:
.. code-block:: bash
export VERL_LOGGING_LEVEL=DEBUG
**Performance Monitoring**
Monitor interaction performance impact on training throughput and adjust accordingly.
Related Documentation
--------------------
- :doc:`multiturn`: Basic multi-turn rollout configuration
- :doc:`sandbox_fusion`: Tool integration with SGLang
- :doc:`search_tool_example`: Search tool implementation example