#!/bin/bash project_name='DAPO' exp_name='DAPO-Qwen3-30B-megatron' adv_estimator=grpo use_kl_in_reward=False kl_coef=0.0 use_kl_loss=False kl_loss_coef=0.0 clip_ratio_low=0.2 clip_ratio_high=0.28 max_prompt_length=$((1024 * 2)) max_response_length=$((1024 * 20)) enable_overlong_buffer=True overlong_buffer_len=$((1024 * 4)) overlong_penalty_factor=1.0 loss_agg_mode="token-mean" enable_filter_groups=True filter_groups_metric=acc max_num_gen_batches=10 train_prompt_bsz=16 gen_prompt_bsz=$((train_prompt_bsz * 2)) n_resp_per_prompt=16 train_prompt_mini_bsz=2 # Ray RAY_ADDRESS=${RAY_ADDRESS:-"http://localhost:8265"} WORKING_DIR=${WORKING_DIR:-"${PWD}"} RUNTIME_ENV=${RUNTIME_ENV:-"${WORKING_DIR}/verl/trainer/runtime_env.yaml"} NNODES=${NNODES:-1} # Paths RAY_DATA_HOME=${RAY_DATA_HOME:-"${HOME}/verl"} MODEL_PATH=${MODEL_PATH:-"${RAY_DATA_HOME}/models/Qwen3-30B-A3B"} # MCORE_MODEL_PATH points to the converted checkpoint. # To avoid loading these weights, set actor_rollout_ref.actor.megatron.use_dist_checkpointing=False. MCORE_MODEL_PATH=${MCORE_MODEL_PATH:-"${RAY_DATA_HOME}/models/Qwen3-30B-A3B-dist_ckpt"} CKPTS_DIR=${CKPTS_DIR:-"${RAY_DATA_HOME}/ckpts/${project_name}/${exp_name}"} TRAIN_FILE=${TRAIN_FILE:-"${RAY_DATA_HOME}/data/dapo-math-17k.parquet"} TEST_FILE=${TEST_FILE:-"${RAY_DATA_HOME}/data/aime-2024.parquet"} # Algorithm temperature=1.0 top_p=1.0 top_k=-1 # 0 for HF rollout, -1 for vLLM rollout # Performance Related Parameter sp_size=8 use_dynamic_bsz=True actor_ppo_max_token_len=$(((max_prompt_length + max_response_length))) infer_ppo_max_token_len=$(((max_prompt_length + max_response_length))) offload=True max_num_batched_tokens=$((max_prompt_length + max_response_length)) # Megatron backen train_tp=4 train_ep=2 train_pp=2 train_cp=1 ray job submit --no-wait --runtime-env="${RUNTIME_ENV}" \ --address "${RAY_ADDRESS}" \ -- python3 -m recipe.dapo.main_dapo \ --config-name="dapo_megatron_trainer" \ data.filter_overlong_prompts=False \ data.train_files="${TRAIN_FILE}" \ data.val_files="${TEST_FILE}" \ data.shuffle=False \ data.prompt_key=prompt \ data.truncation='left' \ data.max_prompt_length=${max_prompt_length} \ data.max_response_length=${max_response_length} \ data.gen_batch_size=${gen_prompt_bsz} \ data.train_batch_size=${train_prompt_bsz} \ algorithm.adv_estimator=${adv_estimator} \ algorithm.use_kl_in_reward=${use_kl_in_reward} \ algorithm.kl_ctrl.kl_coef=${kl_coef} \ actor_rollout_ref.rollout.n=${n_resp_per_prompt} \ actor_rollout_ref.rollout.name=vllm \ actor_rollout_ref.actor.use_kl_loss=${use_kl_loss} \ actor_rollout_ref.actor.kl_loss_coef=${kl_loss_coef} \ actor_rollout_ref.actor.clip_ratio_low=${clip_ratio_low} \ actor_rollout_ref.actor.clip_ratio_high=${clip_ratio_high} \ actor_rollout_ref.actor.clip_ratio_c=10.0 \ actor_rollout_ref.actor.ppo_epochs=1 \ algorithm.filter_groups.enable=${enable_filter_groups} \ algorithm.filter_groups.max_num_gen_batches=${max_num_gen_batches} \ algorithm.filter_groups.metric=${filter_groups_metric} \ actor_rollout_ref.model.use_remove_padding=True \ actor_rollout_ref.actor.use_dynamic_bsz=${use_dynamic_bsz} \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=1 \ actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=1 \ actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=1 \ actor_rollout_ref.ref.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \ actor_rollout_ref.rollout.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \ actor_rollout_ref.actor.ppo_max_token_len_per_gpu=${actor_ppo_max_token_len} \ actor_rollout_ref.ref.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \ actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \ actor_rollout_ref.model.path="${MODEL_PATH}" \ +actor_rollout_ref.model.override_config.attention_dropout=0. \ +actor_rollout_ref.model.override_config.embd_pdrop=0. \ +actor_rollout_ref.model.override_config.resid_pdrop=0. \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.actor.optim.lr_warmup_steps=10 \ actor_rollout_ref.actor.ppo_mini_batch_size=${train_prompt_mini_bsz} \ actor_rollout_ref.actor.megatron.param_offload=${offload} \ actor_rollout_ref.actor.megatron.optimizer_offload=${offload} \ actor_rollout_ref.actor.megatron.grad_offload=${offload} \ actor_rollout_ref.actor.megatron.pipeline_model_parallel_size=${train_pp} \ actor_rollout_ref.actor.megatron.tensor_model_parallel_size=${train_tp} \ actor_rollout_ref.actor.megatron.expert_model_parallel_size=${train_ep} \ actor_rollout_ref.actor.megatron.context_parallel_size=${train_cp} \ actor_rollout_ref.actor.megatron.dist_checkpointing_path=${MCORE_MODEL_PATH} \ actor_rollout_ref.actor.megatron.use_dist_checkpointing=True \ actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=${train_pp} \ actor_rollout_ref.ref.megatron.tensor_model_parallel_size=${train_tp} \ actor_rollout_ref.ref.megatron.expert_model_parallel_size=${train_ep} \ actor_rollout_ref.ref.megatron.context_parallel_size=${train_cp} \ actor_rollout_ref.ref.megatron.param_offload=${offload} \ actor_rollout_ref.ref.megatron.dist_checkpointing_path=${MCORE_MODEL_PATH} \ actor_rollout_ref.actor.entropy_coeff=0 \ actor_rollout_ref.actor.loss_agg_mode=${loss_agg_mode} \ actor_rollout_ref.rollout.gpu_memory_utilization=0.7 \ actor_rollout_ref.rollout.tensor_model_parallel_size=${gen_tp} \ actor_rollout_ref.rollout.enable_chunked_prefill=True \ actor_rollout_ref.rollout.enable_prefix_caching=False \ actor_rollout_ref.rollout.max_num_batched_tokens=${max_num_batched_tokens} \ actor_rollout_ref.rollout.max_model_len=$((max_prompt_length + max_response_length)) \ actor_rollout_ref.rollout.temperature=${temperature} \ actor_rollout_ref.rollout.top_p=${top_p} \ actor_rollout_ref.rollout.top_k=${top_k} \ actor_rollout_ref.rollout.val_kwargs.temperature=${temperature} \ actor_rollout_ref.rollout.val_kwargs.top_p=${top_p} \ actor_rollout_ref.rollout.val_kwargs.top_k=${top_k} \ actor_rollout_ref.rollout.val_kwargs.do_sample=True \ actor_rollout_ref.rollout.val_kwargs.n=1 \ actor_rollout_ref.rollout.enforce_eager=True \ actor_rollout_ref.rollout.free_cache_engine=True \ actor_rollout_ref.ref.megatron.use_dist_checkpointing=True \ reward_model.reward_manager=dapo \ reward_model.overlong_buffer.enable=${enable_overlong_buffer} \ reward_model.overlong_buffer.len=${overlong_buffer_len} \ reward_model.overlong_buffer.penalty_factor=${overlong_penalty_factor} \ trainer.logger=['console'] \ trainer.project_name="${project_name}" \ trainer.experiment_name="${exp_name}" \ trainer.n_gpus_per_node=16 \ trainer.nnodes="${NNODES}" \ trainer.val_before_train=False \ trainer.test_freq=-1 \ trainer.save_freq=-1 \ trainer.total_epochs=1 \ trainer.default_local_dir="${CKPTS_DIR}" \ trainer.device="npu" \ actor_rollout_ref.nccl_timeout=14400 \ actor_rollout_ref.actor.use_torch_compile=False \ actor_rollout_ref.ref.use_torch_compile=False \ +actor_rollout_ref.actor.megatron.override_transformer_config.use_flash_attn=True \ +actor_rollout_ref.actor.megatron.override_transformer_config.recompute_method=uniform \ +actor_rollout_ref.actor.megatron.override_transformer_config.recompute_granularity=full \ +actor_rollout_ref.actor.megatron.override_transformer_config.recompute_num_layers=1