set -x # tested in NNODES=1~4 * 96G H20 GPU NNODES=${NNODES:-1} NGPUS_PER_NODES=${NGPUS_PER_NODES:-8} project_name='DAPO-Qwen3-30b-MATH' exp_name='DAPO-Qwen3-30b-MATH-megatron' adv_estimator=grpo use_kl_in_reward=False kl_coef=0.0 use_kl_loss=False kl_loss_coef=0.0 clip_ratio_low=0.2 clip_ratio_high=0.28 max_prompt_length=$((1024 * 2)) max_response_length=$((1024 * 8)) enable_overlong_buffer=True overlong_buffer_len=$((1024 * 4)) overlong_penalty_factor=1.0 loss_agg_mode="token-mean" train_prompt_bsz=512 n_resp_per_prompt=16 train_prompt_mini_bsz=128 train_ppo_micro_batch_size_per_gpu=2 infer_ppo_micro_batch_size_per_gpu=2 # Paths MODEL_PATH=Qwen/Qwen3-30B-A3B RAY_DATA_HOME=${RAY_DATA_HOME:-"${HOME}/verl"} TRAIN_FILE=$RAY_DATA_HOME/dataset/dapo-math-17k.parquet TEST_FILE=$RAY_DATA_HOME/dataset/aime-2024.parquet TEST_FILE="['$aime24_test_path']" # Algorithm temperature=1.0 top_p=1.0 top_k=-1 # 0 for HF rollout, -1 for vLLM rollout val_top_p=0.7 # Performance Related Parameter use_dynamic_bsz=True actor_ppo_max_token_len=$(((max_prompt_length + max_response_length))) infer_ppo_max_token_len=$(((max_prompt_length + max_response_length))) offload=True optimizer_offload_fraction=${OFFLOAD_FRACTION:-1.} COMMON_PP=${COMMON_PP:-1} COMMON_VPP=${COMMON_VPP:-null} COMMON_CP=${COMMON_CP:-1} COMMON_TP=${COMMON_TP:-1} COMMON_EP=${COMMON_EP:-8} COMMON_ETP=${COMMON_ETP:-1} TRAIN_TP=${TRAIN_TP:-$COMMON_TP} INFER_TP=${INFER_TP:-4} ACTOR_PP=${ACTOR_PP:-$COMMON_PP} ACTOR_VPP=${ACTOR_VPP:-$COMMON_VPP} ACTOR_CP=${ACTOR_CP:-$COMMON_CP} ACTOR_TP=${ACTOR_TP:-$TRAIN_TP} ACTOR_EP=${ACTOR_EP:-$COMMON_EP} ACTOR_ETP=${ACTOR_ETP:-$COMMON_ETP} ROLLOUT_TP=${ROLLOUT_TP:-$INFER_TP} REF_PP=${REF_PP:-$COMMON_PP} REF_VPP=${REF_VPP:-$COMMON_VPP} REF_CP=${REF_CP:-$COMMON_CP} REF_TP=${REF_TP:-$TRAIN_TP} REF_EP=${REF_EP:-$COMMON_EP} REF_ETP=${REF_ETP:-$COMMON_ETP} CRITIC_PP=${CRITIC_PP:-$COMMON_PP} CRITIC_VPP=${CRITIC_VPP:-$COMMON_VPP} CRITIC_CP=${CRITIC_CP:-$COMMON_CP} CRITIC_TP=${CRITIC_TP:-$TRAIN_TP} CRITIC_EP=${CRITIC_EP:-$COMMON_EP} CRITIC_ETP=${CRITIC_ETP:-$COMMON_ETP} RM_PP=${RM_PP:-$COMMON_PP} RM_VPP=${RM_VPP:-$COMMON_VPP} RM_CP=${RM_CP:-$COMMON_CP} RM_TP=${RM_TP:-$TRAIN_TP} RM_EP=${RM_EP:-$COMMON_EP} RM_ETP=${RM_ETP:-$COMMON_ETP} # install mbridge # pip3 install git+https://github.com/ISEEKYAN/mbridge USE_MBRIDGE=True USE_DIST_CKPT=False python3 -m verl.trainer.main_ppo --config-path=./config --config-name='ppo_megatron_trainer'\ data.train_files="${TRAIN_FILE}" \ data.val_files="${TEST_FILE}" \ data.prompt_key=prompt \ data.truncation='left' \ data.max_prompt_length=${max_prompt_length} \ data.max_response_length=${max_response_length} \ data.train_batch_size=${train_prompt_bsz} \ actor_rollout_ref.rollout.n=${n_resp_per_prompt} \ algorithm.adv_estimator=${adv_estimator} \ algorithm.use_kl_in_reward=${use_kl_in_reward} \ algorithm.kl_ctrl.kl_coef=${kl_coef} \ actor_rollout_ref.model.path="${MODEL_PATH}" \ actor_rollout_ref.actor.use_kl_loss=${use_kl_loss} \ actor_rollout_ref.actor.kl_loss_coef=${kl_loss_coef} \ actor_rollout_ref.actor.clip_ratio_low=${clip_ratio_low} \ actor_rollout_ref.actor.clip_ratio_high=${clip_ratio_high} \ actor_rollout_ref.actor.clip_ratio_c=10.0 \ +actor_rollout_ref.model.override_config.model_config.max_position_embeddings=$((max_prompt_length + max_response_length)) \ actor_rollout_ref.model.use_fused_kernels=False \ actor_rollout_ref.actor.use_dynamic_bsz=${use_dynamic_bsz} \ actor_rollout_ref.actor.ppo_mini_batch_size=${train_prompt_mini_bsz} \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=${train_ppo_micro_batch_size_per_gpu} \ actor_rollout_ref.actor.ppo_max_token_len_per_gpu=${actor_ppo_max_token_len} \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.actor.optim.lr_warmup_steps=10 \ actor_rollout_ref.actor.optim.lr_decay_style='constant' \ actor_rollout_ref.actor.optim.weight_decay=0.1 \ +actor_rollout_ref.actor.optim.override_optimizer_config.optimizer_offload_fraction=${optimizer_offload_fraction} \ +actor_rollout_ref.actor.optim.override_optimizer_config.overlap_cpu_optimizer_d2h_h2d=True \ +actor_rollout_ref.actor.optim.override_optimizer_config.use_precision_aware_optimizer=True \ +actor_rollout_ref.actor.optim.override_optimizer_config.optimizer_cpu_offload=True \ actor_rollout_ref.actor.megatron.use_mbridge=$USE_MBRIDGE \ actor_rollout_ref.actor.megatron.use_dist_checkpointing=$USE_DIST_CKPT \ actor_rollout_ref.actor.megatron.param_offload=${offload} \ actor_rollout_ref.actor.megatron.grad_offload=${offload} \ actor_rollout_ref.actor.megatron.optimizer_offload=${offload} \ actor_rollout_ref.actor.megatron.tensor_model_parallel_size=${ACTOR_TP} \ actor_rollout_ref.actor.megatron.pipeline_model_parallel_size=${ACTOR_PP} \ actor_rollout_ref.actor.megatron.virtual_pipeline_model_parallel_size=${ACTOR_VPP} \ actor_rollout_ref.actor.megatron.context_parallel_size=${ACTOR_CP} \ actor_rollout_ref.actor.megatron.expert_model_parallel_size=${ACTOR_EP} \ actor_rollout_ref.actor.megatron.expert_tensor_parallel_size=${ACTOR_ETP} \ +actor_rollout_ref.actor.megatron.override_transformer_config.apply_rope_fusion=True \ +actor_rollout_ref.actor.megatron.override_transformer_config.masked_softmax_fusion=True \ +actor_rollout_ref.actor.megatron.override_transformer_config.bias_activation_fusion=True \ +actor_rollout_ref.actor.megatron.override_transformer_config.bias_dropout_fusion=True \ +actor_rollout_ref.actor.megatron.override_transformer_config.gradient_accumulation_fusion=True \ +actor_rollout_ref.actor.megatron.override_transformer_config.deallocate_pipeline_outputs=True \ +actor_rollout_ref.actor.megatron.override_transformer_config.persist_layer_norm=True \ +actor_rollout_ref.actor.megatron.override_transformer_config.moe_grouped_gemm=True \ +actor_rollout_ref.actor.megatron.override_transformer_config.moe_permute_fusion=True \ +actor_rollout_ref.actor.megatron.override_transformer_config.moe_token_dispatcher_type="flex" \ +actor_rollout_ref.actor.megatron.override_transformer_config.moe_router_dtype=fp32 \ +actor_rollout_ref.actor.megatron.override_transformer_config.moe_enable_deepep=True \ actor_rollout_ref.actor.entropy_coeff=0 \ actor_rollout_ref.actor.loss_agg_mode=${loss_agg_mode} \ actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=${infer_ppo_micro_batch_size_per_gpu} \ actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \ actor_rollout_ref.rollout.gpu_memory_utilization=0.7 \ actor_rollout_ref.rollout.tensor_model_parallel_size=${INFER_TP} \ actor_rollout_ref.rollout.enable_chunked_prefill=True \ actor_rollout_ref.rollout.max_num_batched_tokens=$((max_prompt_length + max_response_length)) \ actor_rollout_ref.rollout.temperature=${temperature} \ actor_rollout_ref.rollout.top_p=${top_p} \ actor_rollout_ref.rollout.top_k=${top_k} \ actor_rollout_ref.rollout.val_kwargs.temperature=${temperature} \ actor_rollout_ref.rollout.val_kwargs.top_p=${val_top_p} \ actor_rollout_ref.rollout.val_kwargs.top_k=${top_k} \ actor_rollout_ref.rollout.val_kwargs.do_sample=True \ actor_rollout_ref.rollout.val_kwargs.n=1 \ actor_rollout_ref.rollout.name=vllm \ actor_rollout_ref.rollout.enforce_eager=True \ actor_rollout_ref.rollout.free_cache_engine=True \ actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=${infer_ppo_micro_batch_size_per_gpu} \ actor_rollout_ref.ref.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \ actor_rollout_ref.ref.megatron.use_dist_checkpointing=${USE_DIST_CKPT} \ actor_rollout_ref.ref.megatron.param_offload=${offload} \ actor_rollout_ref.ref.megatron.tensor_model_parallel_size=${REF_TP} \ actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=${REF_PP} \ actor_rollout_ref.ref.megatron.virtual_pipeline_model_parallel_size=${REF_VPP} \ actor_rollout_ref.ref.megatron.context_parallel_size=${REF_CP} \ actor_rollout_ref.ref.megatron.expert_model_parallel_size=${REF_EP} \ actor_rollout_ref.ref.megatron.expert_tensor_parallel_size=${REF_ETP} \ reward_model.reward_manager=dapo \ +reward_model.reward_kwargs.overlong_buffer_cfg.enable=${enable_overlong_buffer} \ +reward_model.reward_kwargs.overlong_buffer_cfg.len=${overlong_buffer_len} \ +reward_model.reward_kwargs.overlong_buffer_cfg.penalty_factor=${overlong_penalty_factor} \ +reward_model.reward_kwargs.overlong_buffer_cfg.log=False \ +reward_model.reward_kwargs.max_resp_len=${max_response_length} \ trainer.logger=['console','wandb'] \ trainer.project_name="${project_name}" \ trainer.experiment_name="${exp_name}" \ trainer.n_gpus_per_node="${NGPUS_PER_NODES}" \ trainer.nnodes="${NNODES}" \ trainer.val_before_train=False \ trainer.test_freq=10 \ trainer.save_freq=100 \ trainer.total_epochs=10 \ trainer.resume_mode=auto \ trainer.log_val_generations=10