set -x gsm8k_train_path=$HOME/data/gsm8k/train.parquet gsm8k_test_path=$HOME/data/gsm8k/test.parquet math_train_path=$HOME/data/math/train.parquet math_test_path=$HOME/data/math/test.parquet train_files="['$gsm8k_train_path', '$math_train_path']" test_files="['$gsm8k_test_path', '$math_test_path']" python3 -m verl.trainer.main_ppo \ algorithm.adv_estimator=grpo \ data.train_files="$train_files" \ data.val_files="$test_files" \ data.train_batch_size=1024 \ data.max_prompt_length=1024 \ data.max_response_length=1024 \ data.filter_overlong_prompts=True \ data.truncation='error' \ actor_rollout_ref.model.path=deepseek-ai/deepseek-llm-7b-chat \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.model.use_remove_padding=True \ actor_rollout_ref.actor.ppo_mini_batch_size=256 \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=40 \ actor_rollout_ref.actor.use_kl_loss=True \ actor_rollout_ref.actor.kl_loss_coef=0.001 \ actor_rollout_ref.actor.kl_loss_type=low_var_kl \ actor_rollout_ref.actor.entropy_coeff=0 \ actor_rollout_ref.model.enable_gradient_checkpointing=True \ actor_rollout_ref.actor.fsdp_config.param_offload=False \ actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \ actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=40 \ actor_rollout_ref.rollout.tensor_model_parallel_size=2 \ actor_rollout_ref.rollout.name=vllm \ actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \ actor_rollout_ref.rollout.n=5 \ actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=40 \ actor_rollout_ref.ref.fsdp_config.param_offload=True \ algorithm.use_kl_in_reward=False \ trainer.critic_warmup=0 \ trainer.logger='["console","wandb"]' \ trainer.project_name='verl_grpo_example_gsm8k_math' \ trainer.experiment_name='deepseek_llm_7b_function_rm_math' \ trainer.n_gpus_per_node=8 \ trainer.nnodes=1 \ trainer.save_freq=20 \ trainer.test_freq=5 \ trainer.total_epochs=15 $@