mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 13:43:50 +08:00
main
8 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
65eb019a81 |
[trainer] fix: Add data.seed to config (#3815)
|
|||
2bbd09245c |
[ray] feat: add support for ray init kwargs (#3049)
### What does this PR do? This PR adds support for passing parameters to `ray.init`. Users can now dynamically configure settings such as `address`, `port`, `_temp_dir`, and more based on their specific needs. ### Checklist Before Starting - [x] Search for similar PRs. Paste at least one query link here: ... - [x] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test ```bash # when /tmp/ray/ is used by others # when ray is initialized at 6379 by others # when the dashboard is not accessible at localhost # ... bash examples/grpo_trainer/run_qwen2_5_vl-7b.sh \ +ray_kwargs.ray_init._temp_dir=/tmp/ray/my_dir \ +ray_kwargs.ray_init.address=127.0.0.1:6378 \ +ray_kwargs.ray_init.dashboard_host=0.0.0.0 ``` ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [x] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [x] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). (If not accessible, please try [the Feishu group (飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).) |
|||
c0f99f3da2 |
[BREAKING] [ray, megatron] feat: remove RayMegatronWorker (#2895)
### What does this PR do? - Following https://github.com/volcengine/verl/pull/2893, we can now directly register dispatch and collect function inside the worker. So, there is no need to maintain RayMegatronWorker and RayMegatronWorkerGroup, which is a hacking solution ### Checklist Before Starting - [ ] Search for similar PRs. Paste at least one query link here: ... - [ ] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc. ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### Design & Code Changes > Demonstrate the high-level design if this PR is complex, and list the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [ ] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [ ] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). (If not accessible, please try [the Feishu group (飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).) --------- Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com> |
|||
4aa02fe166 |
[trainer] fix: Allow FSDP2 when doing strategy check (#2497)
### What does this PR do? Allow FSDP2 when doing strategy check ### Checklist Before Starting - [X] Search for similar PRs. Paste at least one query link here: ... - [X] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc. ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### Design & Code Changes > Demonstrate the high-level design if this PR is complex, and list the specific changes. For `strategy` field, now both "fsdp" and "fsdp2" are considered valid. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [X] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [X] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [X] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [X] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [X] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). Signed-off-by: Hollow Man <hollowman@opensuse.org> |
|||
00a10a8ef3 |
[ci] refactor: reduce ruff line-length from 300 to 120 (#2287)
### What does this PR do? Previously the ruff line-len is too large, making it hard for users to view code. If we keep the config, manually created short lines will be formatted to long lines as well. This PR contains 3 commits: - df4bbfca62f41d972c48c8a76088ae2ac29691cf set line len to 120 and run pre-commit auto-format - 9d03f183edd9fff4e22215cacacf62c06b7b41d3 let devin fix the multi-line code - 9fc8d436f5007535fad3dc49983b01d0d457be9c skip lint for test_sglang_async_rollout_sf_tools.py. manually adjust format for rope_utils.py - last two commits: 1. merge with main 2. run lint after merge. add test_sglang_async_rollout_sf_tools.py and scripts/legacy_model_merger.py to lint.exclude ### Checklist Before Starting - [x] Search for similar PRs. Paste at least one query link here: ... - [x] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test This PR relies on CI for testing. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [ ] Read the [Contribute Guide](https://github.com/volcengine/verl?tab=readme-ov-file#contribution-guide). - [ ] Apply [pre-commit checks](https://github.com/volcengine/verl?tab=readme-ov-file#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). --------- Co-authored-by: Devin AI <158243242+devin-ai-integration[bot]@users.noreply.github.com> |
|||
b2235f0a55 |
[recipe] fix: unsupported operand type(s) for |: 'dict' and 'DictConfig' (#2217)
### What does this PR do? #### Fix https://github.com/volcengine/verl/issues/2216 #### 1 Fix Config Reference in entropy_trainer.yaml #### 2 Fix TypeError When Merging `reward_kwargs` and `cfg_reward_kwargs` ### Checklist Before Starting - [ ] Search for similar PRs. Paste at least one query link here: ... - [ ] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc. ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### High-Level Design > Demonstrate the high-level design if this PR is complex. ### Specific Changes > List the specific changes. #### 1 Fix Config Reference in entropy_trainer.yaml - Modified File : `recipe.entropy.config.entropy_trainer.yaml` - Change: ```yaml - reward_model.reward_kwargs.overlong_buffer_cfg: $reward_model.overlong_buffer + reward_model.reward_kwargs.overlong_buffer_cfg: ${reward_model.overlong_buffer} ``` - Purpose : Ensures OmegaConf correctly resolves the reference as a DictConfig object instead of interpreting it as a string. #### 2 Fix TypeError When Merging `reward_kwargs` and `cfg_reward_kwargs` - Modified File : `recipe.entropy.main_entropy.py` - Change : ```yaml - reward_fn = load_reward_manager(config, tokenizer, num_examine=0, **(merge_dict(reward_kwargs, cfg_reward_kwargs))) + reward_fn = load_reward_manager(config, tokenizer, num_examine=0, **OmegaConf.merge(OmegaConf.create(reward_kwargs), cfg_reward_kwargs)) ``` - Purpose : Use OmegaConf.merge() to safely merge dict and DictConfig types. > Background : > The DAPORewardManager class accesses the `enable` attribute from `overlong_buffer_cfg`. > This fails if `overlong_buffer_cfg` is a regular dict. > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [ ] Read the [Contribute Guide](https://github.com/volcengine/verl?tab=readme-ov-file#contribution-guide). - [ ] Apply [pre-commit checks](https://github.com/volcengine/verl?tab=readme-ov-file#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). --------- Co-authored-by: H <linhaibin.eric@gmail.com> |
|||
b1cdef84b5 |
[recipe] feat: Move entropy reward to the entropy recipe (#2118)
### Checklist Before Starting - [x] Searched for similar PR(s). - [x] Checked PR Title format - In format of: [modules] type: Title - modules are in `fsdp, megatron, sglang, vllm, rollout, trainer, ci, training_utils, recipe, hardware, deployment, ray, worker, single_controller, misc, perf, model, algo, env, tool, ckpt, doc, data` - type is in `feat, fix, refactor, chore, test` - can involve multiple modules, seperated by `,` or space, like `[megatron, fsdp, doc] feat: xxx` ### What does this PR do? Move entropy reward to the entropy recipe, and kl_cov anf clip_cov to README > Add one-line overview of what this PR aims to achieve or accomplish. Reference related github issues and PRs if that help review. ### Checklist Before Submitting - [x] Read the [Contribute Guide](https://github.com/volcengine/verl?tab=readme-ov-file#contribution-guide). - [x] Apply [pre-commit checks](https://github.com/volcengine/verl?tab=readme-ov-file#code-linting-and-formatting). - [x] Add `[BREAKING]` to the PR title `description` if it breaks any API. - [x] Update the documentation about your changes in the [docs](https://github.com/volcengine/verl/tree/main/docs). - [x] New CI unit test(s) are added to cover the code path. - [x] Rely on existing unit tests on CI that covers the code path. --------- Co-authored-by: Jiacheng Chen <jackchan9345@gmail.com> Co-authored-by: H <linhaibin.eric@gmail.com> |
|||
39b7250b0a |
[recipe] feat: integrate entropy-mechanism recipe: Clip-Cov and KL-Cov methods (#1830)
### Checklist Before Starting - [x] Search for similar PR(s). ### What does this PR do? > Add support for the Clip-Cov and KL-Cov methods in paper: The Entropy Mechanism of Reinforcement Learning for Reasoning Language Models. Also add the verifier used in the paper. ### High-Level Design > Demonstrate the high-level design if this PR is complex. ### Specific Changes > List the specific changes. in `core_algos.py`, we add the clip-cov and kl-cov loss ``` def compute_policy_loss_clip_cov( old_log_prob, log_prob, advantages, response_mask, cliprange=None, cliprange_low=None, cliprange_high=None, loss_agg_mode="token-mean", clip_ratio=0.0002, clip_cov_lb=1.0, clip_cov_ub=5.0, ): """ Compute the clipped policy objective and related metrics for Clip-Cov. Adapted from https://github.com/PRIME-RL/Entropy-Mechanism-of-RL/blob/main/verl/trainer/ppo/core_algos.py Args: old_log_prob (torch.Tensor): Log-probabilities of actions under the old policy, shape (batch_size, response_length). log_prob (torch.Tensor): Log-probabilities of actions under the current policy, shape (batch_size, response_length). advantages (torch.Tensor): Advantage estimates for each action, shape (batch_size, response_length). response_mask (torch.Tensor): Mask indicating which tokens to include in the loss, shape (batch_size, response_length). cliprange (float, optional): Clipping parameter ε for standard PPO. See https://arxiv.org/abs/1707.06347. Defaults to None (must be provided). cliprange_low (float, optional): Lower clip range for dual-clip PPO. Defaults to same as `cliprange`. cliprange_high (float, optional): Upper clip range for dual-clip PPO. Defaults to same as `cliprange`. loss_agg_mode (str, optional): Aggregation mode for `agg_loss`. Defaults to "token-mean". clip_ratio (float, optional): Ratio for clipping the covariance. Defaults to 0.0002. clip_cov_lb (float, optional): Lower bound for clipping covariance. Defaults to 1.0. clip_cov_ub (float, optional): Upper bound for clipping covariance. Defaults to 5.0. """ assert clip_ratio > 0, "clip_ratio should be larger than 0." negative_approx_kl = log_prob - old_log_prob ratio = torch.exp(negative_approx_kl) ppo_kl = verl_F.masked_mean(-negative_approx_kl, response_mask) pg_losses1 = -advantages * ratio if cliprange_low is None: cliprange_low = cliprange if cliprange_high is None: cliprange_high = cliprange corr = torch.ones_like(advantages) pg_losses2 = -advantages * torch.clamp(ratio, 1 - cliprange_low, 1 + cliprange_high) clip_by_origin = (pg_losses2 > pg_losses1) & (response_mask > 0) cov_all = (advantages- verl_F.masked_mean(advantages, response_mask)) * (log_prob- verl_F.masked_mean(log_prob.detach(), response_mask)) cov_all[response_mask == 0] = -torch.inf cov_all[clip_by_origin] = -torch.inf clip_num = max(int(clip_ratio * response_mask.sum().item()), 1) top_k_idx = (cov_all < clip_cov_ub) & (cov_all > clip_cov_lb) & (response_mask > 0) top_k_idx = torch.nonzero(top_k_idx) if len(top_k_idx) > 0: perm = torch.randperm(len(top_k_idx)) top_k_idx = top_k_idx[perm[:min(clip_num, len(top_k_idx))]] else: top_k_idx = torch.empty((0, 2), device=cov_all.device, dtype=torch.long) corr[top_k_idx[:, 0], top_k_idx[:, 1]] = 0 pg_clipfrac = verl_F.masked_mean((corr==0).float(), response_mask) pg_losses = torch.maximum(pg_losses1, pg_losses2) * corr pg_loss = agg_loss(loss_mat=pg_losses, loss_mask=response_mask, loss_agg_mode=loss_agg_mode) return pg_loss, pg_clipfrac, ppo_kl, torch.tensor(0.) def compute_policy_loss_kl_cov( old_log_prob, log_prob, advantages, response_mask, loss_agg_mode="token-mean", k_ratio=0.0002, ppo_kl_coef=1, ): """ Compute the clipped policy objective and related metrics for Clip-Cov. Adapted from https://github.com/PRIME-RL/Entropy-Mechanism-of-RL/blob/main/verl/trainer/ppo/core_algos.py Args: old_log_prob (torch.Tensor): Log-probabilities of actions under the old policy, shape (batch_size, response_length). log_prob (torch.Tensor): Log-probabilities of actions under the current policy, shape (batch_size, response_length). advantages (torch.Tensor): Advantage estimates for each action, shape (batch_size, response_length). response_mask (torch.Tensor): Mask indicating which tokens to include in the loss, shape (batch_size, response_length). loss_agg_mode (str, optional): Aggregation mode for `agg_loss`. Defaults to "token-mean". k_ratio (float, optional): Ratio for selecting the top-k covariance values. Defaults to 0.0002. ppo_kl_coef (float, optional): Coefficient for the KL penalty term in the loss. Defaults to 1. """ assert k_ratio > 0, "k_ratio should be larger than 0." negative_approx_kl = log_prob - old_log_prob abs_kl = negative_approx_kl.abs() ratio = torch.exp(negative_approx_kl) ppo_kl_abs = verl_F.masked_mean(negative_approx_kl.abs(), response_mask) pg_losses1 = -advantages * ratio pg_losses_kl = - advantages * ratio + ppo_kl_coef * abs_kl pg_losses = pg_losses1 all_valid = (response_mask > 0) all_valid_idx = torch.nonzero(all_valid.reshape(-1), as_tuple=True)[0] all_valid_adv = advantages[all_valid].detach().reshape(-1).cpu() all_valid_logp = log_prob[all_valid].detach().reshape(-1).cpu() k = min(k_ratio, len(all_valid_adv)) if k != 0: cov_lst_all = (all_valid_adv - all_valid_adv.mean()) * (all_valid_logp - all_valid_logp.mean()) k_percent_nums = max(1, int(len(cov_lst_all) * k_ratio)) large_cov_idxs = torch.topk(cov_lst_all, k_percent_nums, largest=True).indices if len(large_cov_idxs) != 0: large_cov_idxs = all_valid_idx[large_cov_idxs] pg_losses[large_cov_idxs // advantages.shape[1], large_cov_idxs % advantages.shape[1]] = pg_losses_kl[large_cov_idxs // advantages.shape[1], large_cov_idxs % advantages.shape[1]] pg_loss = agg_loss(loss_mat=pg_losses, loss_mask=response_mask, loss_agg_mode=loss_agg_mode) return pg_loss, torch.tensor(0.), ppo_kl_abs, torch.tensor(0.) ``` in the `dp_actor.py`, we add the loss mode switch feature: ``` loss_mode = self.config.get("loss_mode", "vanilla") if loss_mode not in ["vanilla", "clip_cov", "kl_cov"]: raise ValueError(f"Unsupported loss mode: {loss_mode}. Supported modes are: 'vanilla', 'clip_cov', 'kl_cov'.") if loss_mode == "vanilla": pg_loss, pg_clipfrac, ppo_kl, pg_clipfrac_lower = compute_policy_loss( old_log_prob=old_log_prob, log_prob=log_prob, advantages=advantages, response_mask=response_mask, cliprange=clip_ratio, cliprange_low=clip_ratio_low, cliprange_high=clip_ratio_high, clip_ratio_c=clip_ratio_c, loss_agg_mode=loss_agg_mode, ) elif loss_mode == "clip_cov": pg_loss, pg_clipfrac, ppo_kl, pg_clipfrac_lower= compute_policy_loss_clip_cov( old_log_prob=old_log_prob, log_prob=log_prob, advantages=advantages, response_mask=response_mask, cliprange=clip_ratio, cliprange_low=clip_ratio_low, cliprange_high=clip_ratio_high, loss_agg_mode=loss_agg_mode, clip_ratio=self.config.clip_cov_ratio, clip_cov_lb=self.config.clip_cov_lb, clip_cov_ub=self.config.clip_cov_ub, ) elif loss_mode == "kl_cov": pg_loss, pg_clipfrac, ppo_kl, pg_clipfrac_lower= compute_policy_loss_kl_cov( old_log_prob=old_log_prob, log_prob=log_prob, advantages=advantages, response_mask=response_mask, loss_agg_mode=loss_agg_mode, k_ratio=self.config.k_ratio, ppo_kl_coef=self.config.ppo_kl_coef, ) ``` ### Usage Example > Provide usage example(s) for easier usage. We create a recipe (built on dapo recipe) named entropy to store our scripts, for example the `7b_kl_cov.sh`: ``` #!/usr/bin/env bash set -xeuo pipefail export WANDB_API_KEY=YOUR_WANDB_API_KEY # export VLLM_USE_V1=1 project_name='Qwen2.5-7B' exp_name='klcov' adv_estimator=grpo use_kl_in_reward=False kl_coef=0.0 use_kl_loss=False kl_loss_coef=0.0 clip_ratio_low=0.2 clip_ratio_high=0.2 max_prompt_length=$((1024 * 2)) max_response_length=$((1024 * 8)) enable_overlong_buffer=False overlong_buffer_len=$((1024 * 2)) overlong_penalty_factor=1.0 loss_agg_mode="token-mean" loss_mode="kl_cov" enable_filter_groups=False filter_groups_metric=acc max_num_gen_batches=10 train_prompt_bsz=256 gen_prompt_bsz=$((train_prompt_bsz * 3)) train_prompt_mini_bsz=256 n_resp_per_prompt=8 max_token=20480 # Ray RAY_ADDRESS=${RAY_ADDRESS:-"http://localhost:8265"} WORKING_DIR=${WORKING_DIR:-"${PWD}"} RUNTIME_ENV=${RUNTIME_ENV:-"${WORKING_DIR}/verl/trainer/runtime_env.yaml"} NNODES=${NNODES:-4} # Paths RAY_DATA_HOME=${RAY_DATA_HOME:-"${HOME}/verl"} MODEL_PATH=${MODEL_PATH:-"/YOUR_MODELPATH"} CKPTS_DIR=${CKPTS_DIR:-"/YOUR_CKPTS_PATH"} TRAIN_FILE=${TRAIN_FILE:-"/YOUR_TRAIN_FILE_PATH"} TEST_FILE=${TEST_FILE:-["/YOUR_TRAIN_FILE_PATH"]} # Algorithm temperature=1.0 top_p=1.0 top_k=-1 # 0 for HF rollout, -1 for vLLM rollout ppo_kl_coef=1 k_ratio=0.002 # Mathematically equivalent use_dynamic_bsz=True infer_micro_batch_size=null train_micro_batch_size=null offload=False HYDRA_FULL_ERROR=1 python -m recipe.entropy.main_entropy \ data.train_files="${TRAIN_FILE}" \ data.val_files="${TEST_FILE}" \ data.prompt_key=prompt \ data.truncation='left' \ data.filter_overlong_prompts=False \ data.max_prompt_length=${max_prompt_length} \ data.max_response_length=${max_response_length} \ data.gen_batch_size=${gen_prompt_bsz} \ data.train_batch_size=${train_prompt_bsz} \ data.return_raw_chat=True \ actor_rollout_ref.rollout.n=${n_resp_per_prompt} \ actor_rollout_ref.actor.use_kl_loss=${use_kl_loss} \ actor_rollout_ref.actor.kl_loss_coef=${kl_loss_coef} \ actor_rollout_ref.actor.clip_ratio_low=${clip_ratio_low} \ actor_rollout_ref.actor.clip_ratio_high=${clip_ratio_high} \ actor_rollout_ref.actor.clip_ratio_c=10.0 \ actor_rollout_ref.actor.loss_mode=${loss_mode} \ actor_rollout_ref.actor.k_ratio=${k_ratio} \ actor_rollout_ref.actor.ppo_kl_coef=${ppo_kl_coef} \ actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=8 \ actor_rollout_ref.rollout.mode=sync \ algorithm.adv_estimator=${adv_estimator} \ algorithm.use_kl_in_reward=${use_kl_in_reward} \ algorithm.kl_ctrl.kl_coef=${kl_coef} \ algorithm.filter_groups.enable=${enable_filter_groups} \ algorithm.filter_groups.metric=${filter_groups_metric} \ algorithm.filter_groups.max_num_gen_batches=${max_num_gen_batches} \ actor_rollout_ref.model.use_remove_padding=True \ actor_rollout_ref.actor.use_dynamic_bsz=${use_dynamic_bsz} \ actor_rollout_ref.ref.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \ actor_rollout_ref.rollout.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \ actor_rollout_ref.actor.ppo_max_token_len_per_gpu=${max_token} \ actor_rollout_ref.ref.log_prob_max_token_len_per_gpu=${max_token} \ actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=${max_token} \ actor_rollout_ref.model.path="${MODEL_PATH}" \ actor_rollout_ref.model.enable_gradient_checkpointing=True \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.actor.optim.weight_decay=0 \ actor_rollout_ref.actor.optim.warmup_style=constant \ actor_rollout_ref.actor.ppo_mini_batch_size=${train_prompt_mini_bsz} \ actor_rollout_ref.actor.ppo_micro_batch_size=${train_micro_batch_size} \ actor_rollout_ref.actor.fsdp_config.param_offload=${offload} \ actor_rollout_ref.actor.fsdp_config.optimizer_offload=${offload} \ actor_rollout_ref.actor.entropy_coeff=0 \ actor_rollout_ref.actor.grad_clip=1.0 \ actor_rollout_ref.actor.loss_agg_mode=${loss_agg_mode} \ actor_rollout_ref.actor.ulysses_sequence_parallel_size=1 \ actor_rollout_ref.rollout.gpu_memory_utilization=0.85 \ actor_rollout_ref.rollout.log_prob_micro_batch_size=${infer_micro_batch_size} \ actor_rollout_ref.rollout.tensor_model_parallel_size=2 \ actor_rollout_ref.rollout.enable_chunked_prefill=True \ actor_rollout_ref.rollout.max_num_batched_tokens=${max_token} \ actor_rollout_ref.rollout.temperature=${temperature} \ actor_rollout_ref.rollout.top_p=${top_p} \ actor_rollout_ref.rollout.top_k="${top_k}" \ actor_rollout_ref.rollout.val_kwargs.temperature=${temperature} \ actor_rollout_ref.rollout.val_kwargs.top_p=${top_p} \ actor_rollout_ref.rollout.val_kwargs.top_k=${top_k} \ actor_rollout_ref.rollout.val_kwargs.do_sample=False \ actor_rollout_ref.rollout.val_kwargs.n=1 \ actor_rollout_ref.ref.log_prob_micro_batch_size=${infer_micro_batch_size} \ actor_rollout_ref.ref.fsdp_config.param_offload=${offload} \ actor_rollout_ref.ref.ulysses_sequence_parallel_size=1 \ actor_rollout_ref.actor.fsdp_config.fsdp_size=-1 \ reward_model.reward_manager=dapo \ reward_model.overlong_buffer.enable=${enable_overlong_buffer} \ reward_model.overlong_buffer.len=${overlong_buffer_len} \ reward_model.overlong_buffer.penalty_factor=${overlong_penalty_factor} \ trainer.logger=['console','wandb'] \ trainer.project_name="${project_name}" \ trainer.experiment_name="${exp_name}" \ trainer.n_gpus_per_node=8 \ trainer.nnodes="${NNODES}" \ trainer.val_before_train=False \ trainer.test_freq=4 \ trainer.save_freq=32 \ trainer.total_epochs=1000 \ trainer.default_local_dir="${CKPTS_DIR}" \ trainer.resume_mode=disable ``` ### Test Please refer to the Fig 11 and Tab 2 in https://arxiv.org/pdf/2505.22617 for detailed results. ### Additional Info. NA ### Checklist Before Submitting - [x] Read the [Contribute Guide](https://github.com/volcengine/verl?tab=readme-ov-file#contribution-guide). - [x] Apply [pre-commit checks](https://github.com/volcengine/verl?tab=readme-ov-file#code-linting-and-formatting). - [x] Add `[BREAKING]` to the PR title if it breaks any API. - [x] Update the documentation about your changes in the [docs](https://github.com/volcengine/verl/tree/main/docs). - [x] Add CI test(s) if necessary. --------- Co-authored-by: Jiacheng Chen <jackchan9345@gmail.com> Co-authored-by: H <linhaibin.eric@gmail.com> |