mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 13:43:50 +08:00
[doc] fix: add qwen3moe-30b script and fix error in qwen3-235b (#3174)
1. add qwen3moe-30b script for 1 to 4 H20 nodes with best performance 2. fix error in qwen3-235b: - vllm enable_expert_parallel may result invalid output - megratron num_layers_in_last_pipeline_stage is a depreciate option --------- Co-authored-by: Yan Bai <bayan@nvidia.com>
This commit is contained in:
@ -1,6 +1,6 @@
|
||||
# Training DeepSeek 671b
|
||||
|
||||
Last updated: 06/13/2025.
|
||||
Last updated: 08/20/2025.
|
||||
|
||||
verl integrates Megatron to support large MoE models such as `Qwen3-235B-A22B` and `deepseek-ai/DeepSeek-V3`. This is an ongoing community effort.
|
||||
|
||||
@ -26,6 +26,8 @@ and the megatron backend now has a wider list of models supported:
|
||||
### preparation
|
||||
The recommended image with pre-built Megatron dependency is `verlai/verl:app-verl0.4-vllm0.8.5-mcore0.13.0-preview`, which is built using the Dockerfile at [docker/verl0.4-cu124-torch2.6-fa2.7.4/Dockerfile.app.vllm.mcore0.13.preview](https://github.com/volcengine/verl/blob/main/docker/verl0.4-cu124-torch2.6-fa2.7.4/Dockerfile.app.vllm.mcore0.13.preview).
|
||||
|
||||
The image is build in Hopper GPUs with DeepEP. It does not support None-Hopper GPUs, such as A100. You may need to reinstall DeepEP to work with A100.
|
||||
|
||||
With `OFFLOAD_FRACTION=1`, the system's minimum requirements are lowered. It can run on as few as 96 H20 (96GB) GPUs for DeepSeek-V3, and on as few as 32 H20 (96GB) GPUs for Qwen3-235B-A22B. However, this configuration will use 1.6TB CPU memory per node. If you run out of CPU memory or require faster training speed, you can add more nodes.
|
||||
|
||||
### DeepSeek 671b
|
||||
@ -61,6 +63,18 @@ Here are some benchmark results for DeepSeek / Qwen3-235B. All configurations ma
|
||||
| -- | -- | -- | -- | -- | -- | -- | -- |
|
||||
| DeepSeek 671b | 96 | 1960 | 1050 | 66 | 1500 | 0.19 | 1700 |
|
||||
|
||||
### Qwen3-30B-A3B MOE
|
||||
|
||||
For Qwen3-30b, please refer to [examples/grpo_trainer/run_qwen3moe-30b_megatron_96gb.sh](https://github.com/volcengine/verl/blob/main/examples/grpo_trainer/run_qwen3moe-30b_megatron_96gb.sh]).
|
||||
|
||||
To train your project, configure the following environment variables based on the number of available GPUs. These are recommended settings and can be adjusted based on your specific hardware.
|
||||
| num gpus | NNODES | TP | PP | EP | OFFLOAD_FRACTION | MFU |
|
||||
| -- | -- | -- | -- | -- | -- | -- |
|
||||
| 8 | 1 | 1 | 1 | 8 | 1. | True | 0.4 |
|
||||
| 16 | 2 | 1 | 1 | 8 | 1. | True | 0.37 |
|
||||
| 32 | 4 | 1 | 1 | 8 | 1. | True | 0.31 |
|
||||
|
||||
|
||||
## Upcoming Optimizations
|
||||
|
||||
The community continue to optimize large MoE models further, ongoing efforts include:
|
||||
|
@ -88,6 +88,7 @@ python3 -m verl.trainer.main_ppo \
|
||||
actor_rollout_ref.rollout.n=${n_resp_per_prompt} \
|
||||
actor_rollout_ref.rollout.name=vllm \
|
||||
actor_rollout_ref.rollout.enforce_eager=True \
|
||||
actor_rollout_ref.rollout.free_cache_engine=True \
|
||||
algorithm.adv_estimator=${adv_estimator} \
|
||||
algorithm.use_kl_in_reward=${use_kl_in_reward} \
|
||||
algorithm.kl_ctrl.kl_coef=${kl_coef} \
|
||||
@ -128,7 +129,6 @@ python3 -m verl.trainer.main_ppo \
|
||||
actor_rollout_ref.actor.optim.clip_grad=1.0 \
|
||||
actor_rollout_ref.actor.loss_agg_mode=${loss_agg_mode} \
|
||||
actor_rollout_ref.rollout.gpu_memory_utilization=0.85 \
|
||||
+actor_rollout_ref.rollout.engine_kwargs.vllm.enable_expert_parallel=True \
|
||||
actor_rollout_ref.rollout.tensor_model_parallel_size=${gen_tp} \
|
||||
actor_rollout_ref.rollout.enable_chunked_prefill=True \
|
||||
actor_rollout_ref.rollout.max_num_batched_tokens=$((max_prompt_length + max_response_length)) \
|
||||
@ -147,19 +147,20 @@ python3 -m verl.trainer.main_ppo \
|
||||
actor_rollout_ref.ref.megatron.expert_tensor_parallel_size=$ETP \
|
||||
actor_rollout_ref.ref.megatron.context_parallel_size=${CP} \
|
||||
actor_rollout_ref.ref.megatron.param_offload=${offload} \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.apply_rope_fusion=False \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.moe_router_dtype=fp32 \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.moe_shared_expert_overlap=False \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.moe_enable_deepep=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.moe_token_dispatcher_type=flex \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.recompute_method=uniform \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.recompute_granularity=full \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.recompute_num_layers=1 \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.apply_rope_fusion=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.masked_softmax_fusion=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.bias_activation_fusion=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.bias_dropout_fusion=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.gradient_accumulation_fusion=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.deallocate_pipeline_outputs=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.persist_layer_norm=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.moe_grouped_gemm=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.moe_permute_fusion=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.account_for_embedding_in_pipeline_split=False \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.account_for_loss_in_pipeline_split=False \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.num_layers_in_last_pipeline_stage=${last_layer} \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.moe_token_dispatcher_type="flex" \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.moe_router_dtype=fp32 \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.moe_enable_deepep=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.account_for_loss_in_pipeline_split=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.account_for_embedding_in_pipeline_split=True \
|
||||
reward_model.reward_manager=dapo \
|
||||
+reward_model.reward_kwargs.overlong_buffer_cfg.enable=${enable_overlong_buffer} \
|
||||
+reward_model.reward_kwargs.overlong_buffer_cfg.len=${overlong_buffer_len} \
|
||||
|
@ -1,53 +0,0 @@
|
||||
set -x
|
||||
|
||||
HF_MODEL_PATH=Qwen/Qwen3-30B-A3B
|
||||
DIST_CKPT_PATH=${DIST_CKPT_PATH}
|
||||
|
||||
python scripts/converter_hf_to_mcore.py --hf_model_path $HF_MODEL_PATH --output_path $DIST_CKPT_PATH
|
||||
|
||||
export CUDA_DEVICE_MAX_CONNECTIONS=1 # For megatron communication/computation overlapping
|
||||
|
||||
python3 -m verl.trainer.main_ppo --config-path=config \
|
||||
--config-name='ppo_megatron_trainer.yaml'\
|
||||
algorithm.adv_estimator=grpo \
|
||||
data.train_files=$HOME/data/gsm8k/train.parquet \
|
||||
data.val_files=$HOME/data/gsm8k/test.parquet \
|
||||
data.train_batch_size=64 \
|
||||
data.max_prompt_length=1024 \
|
||||
data.max_response_length=2048 \
|
||||
data.filter_overlong_prompts=True \
|
||||
data.truncation='error' \
|
||||
actor_rollout_ref.model.path=$HF_MODEL_PATH \
|
||||
actor_rollout_ref.actor.optim.lr=1e-6 \
|
||||
actor_rollout_ref.actor.ppo_mini_batch_size=64 \
|
||||
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=4 \
|
||||
actor_rollout_ref.actor.megatron.pipeline_model_parallel_size=2 \
|
||||
actor_rollout_ref.actor.megatron.tensor_model_parallel_size=4 \
|
||||
actor_rollout_ref.actor.megatron.expert_model_parallel_size=4 \
|
||||
actor_rollout_ref.actor.megatron.use_dist_checkpointing=True \
|
||||
actor_rollout_ref.actor.megatron.dist_checkpointing_path=$DIST_CKPT_PATH \
|
||||
actor_rollout_ref.actor.use_kl_loss=True \
|
||||
actor_rollout_ref.actor.kl_loss_coef=0.001 \
|
||||
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
|
||||
actor_rollout_ref.actor.entropy_coeff=0 \
|
||||
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=4 \
|
||||
actor_rollout_ref.rollout.tensor_model_parallel_size=4 \
|
||||
actor_rollout_ref.rollout.name=vllm \
|
||||
actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \
|
||||
actor_rollout_ref.rollout.n=5 \
|
||||
actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=4 \
|
||||
actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=2 \
|
||||
actor_rollout_ref.ref.megatron.tensor_model_parallel_size=4 \
|
||||
actor_rollout_ref.ref.megatron.expert_model_parallel_size=4 \
|
||||
actor_rollout_ref.ref.megatron.use_dist_checkpointing=True \
|
||||
actor_rollout_ref.ref.megatron.dist_checkpointing_path=$DIST_CKPT_PATH \
|
||||
algorithm.use_kl_in_reward=False \
|
||||
trainer.critic_warmup=0 \
|
||||
trainer.logger='["console","wandb"]' \
|
||||
trainer.project_name='verl_grpo_example_gsm8k_math' \
|
||||
trainer.experiment_name='qwen3_30b_moe_megatron' \
|
||||
trainer.n_gpus_per_node=8 \
|
||||
trainer.nnodes=4 \
|
||||
trainer.save_freq=20 \
|
||||
trainer.test_freq=5 \
|
||||
trainer.total_epochs=15 $@
|
195
examples/grpo_trainer/run_qwen3moe-30b_megatron_96gb.sh
Normal file
195
examples/grpo_trainer/run_qwen3moe-30b_megatron_96gb.sh
Normal file
@ -0,0 +1,195 @@
|
||||
set -x
|
||||
|
||||
# tested in NNODES=1~4 * 96G H20 GPU
|
||||
NNODES=${NNODES:-1}
|
||||
NGPUS_PER_NODES=${NGPUS_PER_NODES:-8}
|
||||
|
||||
project_name='DAPO-Qwen3-30b-MATH'
|
||||
exp_name='DAPO-Qwen3-30b-MATH-megatron'
|
||||
|
||||
adv_estimator=grpo
|
||||
|
||||
use_kl_in_reward=False
|
||||
kl_coef=0.0
|
||||
use_kl_loss=False
|
||||
kl_loss_coef=0.0
|
||||
|
||||
clip_ratio_low=0.2
|
||||
clip_ratio_high=0.28
|
||||
max_prompt_length=$((1024 * 2))
|
||||
max_response_length=$((1024 * 8))
|
||||
enable_overlong_buffer=True
|
||||
overlong_buffer_len=$((1024 * 4))
|
||||
overlong_penalty_factor=1.0
|
||||
|
||||
loss_agg_mode="token-mean"
|
||||
|
||||
train_prompt_bsz=512
|
||||
n_resp_per_prompt=16
|
||||
train_prompt_mini_bsz=128
|
||||
train_ppo_micro_batch_size_per_gpu=2
|
||||
infer_ppo_micro_batch_size_per_gpu=2
|
||||
# Paths
|
||||
MODEL_PATH=Qwen/Qwen3-30B-A3B
|
||||
|
||||
RAY_DATA_HOME=${RAY_DATA_HOME:-"${HOME}/verl"}
|
||||
TRAIN_FILE=$RAY_DATA_HOME/dataset/dapo-math-17k.parquet
|
||||
TEST_FILE=$RAY_DATA_HOME/dataset/aime-2024.parquet
|
||||
TEST_FILE="['$aime24_test_path']"
|
||||
|
||||
# Algorithm
|
||||
temperature=1.0
|
||||
top_p=1.0
|
||||
top_k=-1 # 0 for HF rollout, -1 for vLLM rollout
|
||||
val_top_p=0.7
|
||||
|
||||
# Performance Related Parameter
|
||||
use_dynamic_bsz=True
|
||||
actor_ppo_max_token_len=$(((max_prompt_length + max_response_length)))
|
||||
infer_ppo_max_token_len=$(((max_prompt_length + max_response_length)))
|
||||
offload=True
|
||||
|
||||
optimizer_offload_fraction=${OFFLOAD_FRACTION:-1.}
|
||||
|
||||
COMMON_PP=${COMMON_PP:-1}
|
||||
COMMON_VPP=${COMMON_VPP:-null}
|
||||
COMMON_CP=${COMMON_CP:-1}
|
||||
COMMON_TP=${COMMON_TP:-1}
|
||||
COMMON_EP=${COMMON_EP:-8}
|
||||
COMMON_ETP=${COMMON_ETP:-1}
|
||||
|
||||
TRAIN_TP=${TRAIN_TP:-$COMMON_TP}
|
||||
INFER_TP=${INFER_TP:-4}
|
||||
|
||||
ACTOR_PP=${ACTOR_PP:-$COMMON_PP}
|
||||
ACTOR_VPP=${ACTOR_VPP:-$COMMON_VPP}
|
||||
ACTOR_CP=${ACTOR_CP:-$COMMON_CP}
|
||||
ACTOR_TP=${ACTOR_TP:-$TRAIN_TP}
|
||||
ACTOR_EP=${ACTOR_EP:-$COMMON_EP}
|
||||
ACTOR_ETP=${ACTOR_ETP:-$COMMON_ETP}
|
||||
ROLLOUT_TP=${ROLLOUT_TP:-$INFER_TP}
|
||||
REF_PP=${REF_PP:-$COMMON_PP}
|
||||
REF_VPP=${REF_VPP:-$COMMON_VPP}
|
||||
REF_CP=${REF_CP:-$COMMON_CP}
|
||||
REF_TP=${REF_TP:-$TRAIN_TP}
|
||||
REF_EP=${REF_EP:-$COMMON_EP}
|
||||
REF_ETP=${REF_ETP:-$COMMON_ETP}
|
||||
CRITIC_PP=${CRITIC_PP:-$COMMON_PP}
|
||||
CRITIC_VPP=${CRITIC_VPP:-$COMMON_VPP}
|
||||
CRITIC_CP=${CRITIC_CP:-$COMMON_CP}
|
||||
CRITIC_TP=${CRITIC_TP:-$TRAIN_TP}
|
||||
CRITIC_EP=${CRITIC_EP:-$COMMON_EP}
|
||||
CRITIC_ETP=${CRITIC_ETP:-$COMMON_ETP}
|
||||
RM_PP=${RM_PP:-$COMMON_PP}
|
||||
RM_VPP=${RM_VPP:-$COMMON_VPP}
|
||||
RM_CP=${RM_CP:-$COMMON_CP}
|
||||
RM_TP=${RM_TP:-$TRAIN_TP}
|
||||
RM_EP=${RM_EP:-$COMMON_EP}
|
||||
RM_ETP=${RM_ETP:-$COMMON_ETP}
|
||||
|
||||
# install mbridge
|
||||
# pip3 install git+https://github.com/ISEEKYAN/mbridge
|
||||
USE_MBRIDGE=True
|
||||
USE_DIST_CKPT=False
|
||||
|
||||
python3 -m verl.trainer.main_ppo --config-path=./config --config-name='ppo_megatron_trainer'\
|
||||
data.train_files="${TRAIN_FILE}" \
|
||||
data.val_files="${TEST_FILE}" \
|
||||
data.prompt_key=prompt \
|
||||
data.truncation='left' \
|
||||
data.max_prompt_length=${max_prompt_length} \
|
||||
data.max_response_length=${max_response_length} \
|
||||
data.train_batch_size=${train_prompt_bsz} \
|
||||
actor_rollout_ref.rollout.n=${n_resp_per_prompt} \
|
||||
algorithm.adv_estimator=${adv_estimator} \
|
||||
algorithm.use_kl_in_reward=${use_kl_in_reward} \
|
||||
algorithm.kl_ctrl.kl_coef=${kl_coef} \
|
||||
actor_rollout_ref.model.path="${MODEL_PATH}" \
|
||||
actor_rollout_ref.actor.use_kl_loss=${use_kl_loss} \
|
||||
actor_rollout_ref.actor.kl_loss_coef=${kl_loss_coef} \
|
||||
actor_rollout_ref.actor.clip_ratio_low=${clip_ratio_low} \
|
||||
actor_rollout_ref.actor.clip_ratio_high=${clip_ratio_high} \
|
||||
actor_rollout_ref.actor.clip_ratio_c=10.0 \
|
||||
+actor_rollout_ref.model.override_config.model_config.max_position_embeddings=$((max_prompt_length + max_response_length)) \
|
||||
actor_rollout_ref.model.use_fused_kernels=False \
|
||||
actor_rollout_ref.actor.use_dynamic_bsz=${use_dynamic_bsz} \
|
||||
actor_rollout_ref.actor.ppo_mini_batch_size=${train_prompt_mini_bsz} \
|
||||
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=${train_ppo_micro_batch_size_per_gpu} \
|
||||
actor_rollout_ref.actor.ppo_max_token_len_per_gpu=${actor_ppo_max_token_len} \
|
||||
actor_rollout_ref.actor.optim.lr=1e-6 \
|
||||
actor_rollout_ref.actor.optim.lr_warmup_steps=10 \
|
||||
actor_rollout_ref.actor.optim.lr_decay_style='constant' \
|
||||
actor_rollout_ref.actor.optim.weight_decay=0.1 \
|
||||
+actor_rollout_ref.actor.optim.override_optimizer_config.optimizer_offload_fraction=${optimizer_offload_fraction} \
|
||||
+actor_rollout_ref.actor.optim.override_optimizer_config.overlap_cpu_optimizer_d2h_h2d=True \
|
||||
+actor_rollout_ref.actor.optim.override_optimizer_config.use_precision_aware_optimizer=True \
|
||||
+actor_rollout_ref.actor.optim.override_optimizer_config.optimizer_cpu_offload=True \
|
||||
actor_rollout_ref.actor.megatron.use_mbridge=$USE_MBRIDGE \
|
||||
actor_rollout_ref.actor.megatron.use_dist_checkpointing=$USE_DIST_CKPT \
|
||||
actor_rollout_ref.actor.megatron.param_offload=${offload} \
|
||||
actor_rollout_ref.actor.megatron.grad_offload=${offload} \
|
||||
actor_rollout_ref.actor.megatron.optimizer_offload=${offload} \
|
||||
actor_rollout_ref.actor.megatron.tensor_model_parallel_size=${ACTOR_TP} \
|
||||
actor_rollout_ref.actor.megatron.pipeline_model_parallel_size=${ACTOR_PP} \
|
||||
actor_rollout_ref.actor.megatron.virtual_pipeline_model_parallel_size=${ACTOR_VPP} \
|
||||
actor_rollout_ref.actor.megatron.context_parallel_size=${ACTOR_CP} \
|
||||
actor_rollout_ref.actor.megatron.expert_model_parallel_size=${ACTOR_EP} \
|
||||
actor_rollout_ref.actor.megatron.expert_tensor_parallel_size=${ACTOR_ETP} \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.apply_rope_fusion=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.masked_softmax_fusion=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.bias_activation_fusion=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.bias_dropout_fusion=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.gradient_accumulation_fusion=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.deallocate_pipeline_outputs=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.persist_layer_norm=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.moe_grouped_gemm=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.moe_permute_fusion=True \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.moe_token_dispatcher_type="flex" \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.moe_router_dtype=fp32 \
|
||||
+actor_rollout_ref.actor.megatron.override_transformer_config.moe_enable_deepep=True \
|
||||
actor_rollout_ref.actor.entropy_coeff=0 \
|
||||
actor_rollout_ref.actor.loss_agg_mode=${loss_agg_mode} \
|
||||
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=${infer_ppo_micro_batch_size_per_gpu} \
|
||||
actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \
|
||||
actor_rollout_ref.rollout.gpu_memory_utilization=0.7 \
|
||||
actor_rollout_ref.rollout.tensor_model_parallel_size=${INFER_TP} \
|
||||
actor_rollout_ref.rollout.enable_chunked_prefill=True \
|
||||
actor_rollout_ref.rollout.max_num_batched_tokens=$((max_prompt_length + max_response_length)) \
|
||||
actor_rollout_ref.rollout.temperature=${temperature} \
|
||||
actor_rollout_ref.rollout.top_p=${top_p} \
|
||||
actor_rollout_ref.rollout.top_k=${top_k} \
|
||||
actor_rollout_ref.rollout.val_kwargs.temperature=${temperature} \
|
||||
actor_rollout_ref.rollout.val_kwargs.top_p=${val_top_p} \
|
||||
actor_rollout_ref.rollout.val_kwargs.top_k=${top_k} \
|
||||
actor_rollout_ref.rollout.val_kwargs.do_sample=True \
|
||||
actor_rollout_ref.rollout.val_kwargs.n=1 \
|
||||
actor_rollout_ref.rollout.name=vllm \
|
||||
actor_rollout_ref.rollout.enforce_eager=True \
|
||||
actor_rollout_ref.rollout.free_cache_engine=True \
|
||||
actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=${infer_ppo_micro_batch_size_per_gpu} \
|
||||
actor_rollout_ref.ref.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \
|
||||
actor_rollout_ref.ref.megatron.use_dist_checkpointing=True \
|
||||
actor_rollout_ref.ref.megatron.param_offload=${offload} \
|
||||
actor_rollout_ref.ref.megatron.tensor_model_parallel_size=${REF_TP} \
|
||||
actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=${REF_PP} \
|
||||
actor_rollout_ref.ref.megatron.virtual_pipeline_model_parallel_size=${REF_VPP} \
|
||||
actor_rollout_ref.ref.megatron.context_parallel_size=${REF_CP} \
|
||||
actor_rollout_ref.ref.megatron.expert_model_parallel_size=${REF_EP} \
|
||||
actor_rollout_ref.ref.megatron.expert_tensor_parallel_size=${REF_ETP} \
|
||||
reward_model.reward_manager=dapo \
|
||||
+reward_model.reward_kwargs.overlong_buffer_cfg.enable=${enable_overlong_buffer} \
|
||||
+reward_model.reward_kwargs.overlong_buffer_cfg.len=${overlong_buffer_len} \
|
||||
+reward_model.reward_kwargs.overlong_buffer_cfg.penalty_factor=${overlong_penalty_factor} \
|
||||
+reward_model.reward_kwargs.overlong_buffer_cfg.log=False \
|
||||
+reward_model.reward_kwargs.max_resp_len=${max_response_length} \
|
||||
trainer.logger=['console','wandb'] \
|
||||
trainer.project_name="${project_name}" \
|
||||
trainer.experiment_name="${exp_name}" \
|
||||
trainer.n_gpus_per_node="${NGPUS_PER_NODES}" \
|
||||
trainer.nnodes="${NNODES}" \
|
||||
trainer.val_before_train=False \
|
||||
trainer.test_freq=10 \
|
||||
trainer.save_freq=100 \
|
||||
trainer.total_epochs=10 \
|
||||
trainer.resume_mode=auto \
|
||||
trainer.log_val_generations=10
|
Reference in New Issue
Block a user